Volumetric and viscometric behaviour of binary systems: (1-hexanol + hydrocarbons)

Abstract Densities and viscosities of binary liquid mixtures of (1-hexanol  + n -hexane, or cyclohexane, or benzene) have been measured at a number of mole fractions at T =  (303, 313, and 323) K. The excess molar volume VmEand apparent molar volume Vφhave been calculated from the density data. TheVmE anddVmE / dT for the system, (1-hexanol  + n -hexane) have been found negative, while those for the systems, (1-hexanol  +  cyclohexane) and (1-hexanol  +  benzene), were found to be positive. Excess viscosities ηEcalculated from viscosity data, have been found to be negative over the whole composition range at the temperatures studied for all the three systems. Volumetric and viscometric behaviours indicate that dispersion is the major force of interaction between the components in (1-hexanol  +  cyclohexane, or benzene), while inclusion of hydrocarbon chains into the interstices of polymolecular ring structures of alcohol formed by hydrogen bonding has been assumed to play a significant role apart from dispersion in the system (1-hexanol  + n -hexane). Thermodynamic parameters of activation for viscous flow have been calculated from the viscosity data at different temperatures and a possible explanation suggested.