Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm

Abstract. Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 (XCO2) for the roughly 100 000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25 %, is required in order to accurately infer carbon sources and sinks from XCO2, significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor-quality measurements, and correct the remaining good-quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect to TCCON was reduced by 20 % over land and 40 % over ocean between versions 7 and 8, and nadir and glint observations over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will continue to evolve and improve as the CO2 data record continues to expand.

[1]  R. Pavlick,et al.  The OCO-3 mission; measurement objectives and expected performance based on one year of simulated data , 2018 .

[2]  Hartmut Boesch,et al.  Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2 , 2014 .

[3]  Charles E. Miller,et al.  NASA Orbiting Carbon Observatory: measuring the column averaged carbon dioxide mole fraction from space , 2008 .

[4]  C. Rödenbeck Estimating CO2 sources and sinks from atmospheric mixing ratio measurements using a global inversion of atmospheric transport , 2005 .

[5]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[6]  Dylan B. A. Jones,et al.  The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network , 2019, Atmospheric Chemistry and Physics.

[7]  Ilse Aben,et al.  Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects. , 2009, Applied optics.

[8]  David Crisp,et al.  Spaceborne detection of localized carbon dioxide sources , 2017, Science.

[9]  S. Dance,et al.  Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter , 2009 .

[10]  G. Berthet,et al.  Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption , 2017 .

[11]  Bryan A. Baum,et al.  Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um , 2013 .

[12]  David Crisp,et al.  Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data , 2015 .

[13]  Hartmut Boesch,et al.  Orbiting Carbon Observatory: Inverse method and prospective error analysis , 2008 .

[14]  J. Randerson,et al.  An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker , 2007, Proceedings of the National Academy of Sciences.

[15]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[16]  M. King,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models , 2005 .

[17]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[18]  Samir Kassi,et al.  The water vapour self-continuum by CRDS at room temperature in the 1.6 µm transparency window , 2013 .

[19]  David Crisp,et al.  Precision requirements for space-based XCO2 data , 2007 .

[20]  Bryan A. Baum,et al.  Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm , 2014 .

[21]  Scott C. Doney,et al.  Carbon source/sink information provided by column CO 2 measurements from the Orbiting Carbon Observatory , 2008 .

[22]  François-Marie Bréon,et al.  Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework , 2007 .

[23]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[24]  Tae-Young Goo,et al.  Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements , 2018, Atmospheric Measurement Techniques.

[25]  David Crisp,et al.  Probabilistic global maps of the CO2 column at daily and monthly scales from sparse satellite measurements , 2017 .

[26]  C. Frankenberg,et al.  Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP , 2018 .

[27]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations , 2011 .

[28]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[29]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[30]  D. Schimel,et al.  The Potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to Provide Multi-scale Constraints on the Carbon Cycle in the Americas , 2018, Front. Environ. Sci..

[31]  David Crisp,et al.  Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) X CO 2 measurements with TCCON , 2016 .

[32]  C. Frankenberg,et al.  Evaluation and attribution of OCO-2 XCO 2 uncertainties , 2016 .

[33]  Hilary E. Snell,et al.  Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) , 2007 .

[34]  S. Massie,et al.  Observational evidence of 3‐D cloud effects in OCO‐2 CO2 retrievals , 2017 .

[35]  Geoffrey C. Toon,et al.  TCCON data from Lamont (US), Release GGG2014.R1 , 2016 .

[36]  Rebecca Castano,et al.  Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission , 2012 .

[37]  Fabienne Maignan,et al.  CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements , 2010 .

[38]  Keeyoon Sung,et al.  Line parameters including temperature dependences of self- and air-broadened line shapes of 12 C 16 O 2 : 1.6-μm region , 2016 .

[39]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part II: Global X CO 2 data characterization , 2012 .

[40]  John Robinson,et al.  Total Column Carbon Observing Network (TCCON) Site: Lauder 125HR , 2014 .

[41]  Ralf Sussmann,et al.  Total Column Carbon Observing Network (TCCON) Site: Garmisch , 2014 .

[42]  Annmarie Eldering,et al.  How bias correction goes wrong: measurement of XCO2 affected by erroneous surface pressure estimates , 2019, Atmospheric Measurement Techniques.

[43]  Margarita López Martínez,et al.  Unified equations for the slope, intercept, and standard errors of the best straight line , 2004 .

[44]  Hartmut Boesch,et al.  Does GOSAT capture the true seasonal cycle of carbon dioxide , 2015 .

[45]  C. Frankenberg,et al.  Evaluation and attribution of OCO-2 XCO 2 uncertainties , 2016 .

[46]  Shamil Maksyutov,et al.  A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights , 2011 .

[47]  V. Malathy Devi,et al.  Line mixing and speed dependence in CO2 at 6348 cm-1: Positions, intensities, and air-and self-broadening derived with constrained multispectrum analysis , 2007 .

[48]  David Crisp,et al.  Quantifying CO2 Emissions From Individual Power Plants From Space , 2017 .

[49]  Christopher W. O'Dell,et al.  Semi-autonomous sounding selection for OCO-2 , 2013 .

[50]  Pauli Heikkinen,et al.  Fourier transform spectrometer measurements of column CO 2 at Sodankylä, Finland , 2016 .

[51]  Geoffrey C. Toon,et al.  Total Column Carbon Observing Network (TCCON) Site: Park Falls , 2014 .

[52]  David Crisp,et al.  The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network , 2019, Atmospheric Chemistry and Physics.

[53]  Karen E. Cady-Pereira,et al.  Uncertainties in atmospheric surface pressure fields from global analyses , 2008 .

[54]  Hiroshi Watanabe,et al.  Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites , 2013 .

[55]  John Robinson,et al.  Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: validation with FTS measurements and comparison with model results , 2011 .

[56]  Rebecca Castano,et al.  A method for evaluating bias in global measurements of CO 2 total columns from space , 2011 .

[57]  John B. Miller,et al.  The impact of transport model differences on CO 2 surface flux estimates from OCO-2 retrievals of column average CO 2 , 2017 .

[58]  Justus Notholt,et al.  Total Column Carbon Observing Network (TCCON) Site: Bremen , 2014 .

[59]  Justus Notholt,et al.  Total Column Carbon Observing Network (TCCON) Site: Orleans , 2014 .

[60]  Dylan B. A. Jones,et al.  Quantifying the Impact of Atmospheric Transport Uncertainty on CO2 Surface Flux Estimates , 2019, Global biogeochemical cycles.

[61]  Justus Notholt,et al.  The Total Carbon Column Observing Network , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  Maximilian Reuter,et al.  A Fast Atmospheric Trace Gas Retrieval for Hyperspectral Instruments Approximating Multiple Scattering - Part 2: Application to XCO2 Retrievals from OCO-2 , 2017, Remote. Sens..

[63]  M. Chin,et al.  Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth , 2010 .

[64]  J. Tamminen,et al.  Direct space‐based observations of anthropogenic CO2 emission areas from OCO‐2 , 2016 .

[65]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[66]  A. Eldering,et al.  Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission , 2017, Science.

[67]  Debra Wunch,et al.  Total Column Carbon Observing Network (TCCON) Site: Manaus , 2014 .

[68]  Rebecca Castano,et al.  The Orbiting Carbon Observatory-2: first 18 months of science data products , 2016 .

[69]  Christof Janssen,et al.  Total Column Carbon Observing Network (TCCON) Site: Paris , 2014 .

[70]  Kohei Arai,et al.  Total Column Carbon Observing Network (TCCON) Site: Saga , 2014 .

[71]  David M. Rider,et al.  Preflight Spectral Calibration of the Orbiting Carbon Observatory 2 , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[72]  The impact of transport model differences on CO 2 surface flux estimates from OCO-2 retrievals of column average CO 2 , 2017 .

[73]  Tatsuya Yokota,et al.  Validation of XCO 2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data , 2011 .

[74]  S. Houweling,et al.  Global CO 2 fluxes estimated from GOSAT retrievals of total column CO 2 , 2013 .

[75]  Keeyoon Sung,et al.  Line parameters including temperature dependences of air- and self-broadened line shapes of 12 C 16 O 2 : 2.06-μm region , 2016 .

[76]  J. Hodges,et al.  High-Accuracy CO(2) Line Intensities Determined from Theory and Experiment. , 2015, Physical review letters.

[77]  Keeyoon Sung,et al.  Multispectrum analysis of the oxygen A-band. , 2016, Journal of Quantitative Spectroscopy and Radiative Transfer.

[78]  Hartmut Boesch,et al.  Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground‐based TCCON observations and GEOS‐Chem model calculations , 2012 .

[79]  David Crisp,et al.  Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2) , 2015, SPIE Optical Engineering + Applications.

[80]  Dietrich G. Feist,et al.  Total Column Carbon Observing Network (TCCON) Site: Ascension Island , 2014 .

[81]  Daren Lu,et al.  First Global Carbon Dioxide Maps Produced from TanSat Measurements , 2018, Advances in Atmospheric Sciences.

[82]  L. Mandrake,et al.  The ACOS CO2 retrieval algorithm-Part II: Global XCO2 data characterization , 2020 .

[83]  I. V. Ptashnik,et al.  Water vapor self‐continuum absorption in near‐infrared windows derived from laboratory measurements , 2011 .

[84]  Frank Hase,et al.  Total Column Carbon Observing Network (TCCON) Site: Izana , 2014 .

[85]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[86]  H. Rahman,et al.  Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data , 1993 .

[87]  Martine De Mazière,et al.  Total Column Carbon Observing Network (TCCON) Site: Reunion Island , 2014 .

[88]  J. Hodges,et al.  High accuracy CO2 line intensities determined from theory and experiment , 2015 .

[89]  Ying Sun,et al.  The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes , 2017, Science.

[90]  C. Frankenberg,et al.  Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO 2 retrievals , 2012 .

[91]  Tatsuya Yokota,et al.  Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements , 2013 .

[92]  S. Doney,et al.  On the Ability of Space‐Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle , 2018 .

[93]  John Robinson,et al.  Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON , 2015 .

[94]  David Crisp,et al.  The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products , 2016 .

[95]  Peter Bergamaschi,et al.  Carbon Monoxide, Methane and Carbon Dioxide Columns Retrieved from SCIAMACHY by WFM-DOAS: Year 2003 Initial Data Set , 2005 .

[96]  Tapio Schneider,et al.  Sources of variations in total column carbon dioxide , 2010 .

[97]  Justus Notholt,et al.  Total Column Carbon Observing Network (TCCON) Collection: GGG2014 Site: Bialystok , 2015 .

[98]  B. Drouin,et al.  Pressure broadening of oxygen by water , 2014 .

[99]  R. Lucchesi,et al.  File Specification for GEOS-5 FP-IT (Forward Processing for Instrument Teams) , 2013 .

[100]  R. Bennartz,et al.  Estimating bias in the OCO-2 retrieval algorithm caused by 3-D radiation scattering from unresolved boundary layer clouds , 2014 .

[101]  Sarah L. Dance,et al.  Estimating surface CO 2 fluxes from space-borne CO 2 dry air mole fraction observations using an ensemble Kalman Filter , 2008 .

[102]  Keeyoon Sung,et al.  High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: Validation of updated carbon dioxide cross-sections using atmospheric spectra , 2017 .

[103]  Masakatsu Nakajima,et al.  The current status of GOSAT and the concept of GOSAT-2 , 2012, Remote Sensing.

[104]  Jean-Luc Moncet,et al.  Development and recent evaluation of the MT_CKD model of continuum absorption , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[105]  Brian J. Connor,et al.  Total Column Carbon Observing Network (TCCON) Site: Darwin , 2014 .

[106]  Dell,et al.  Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño , 2017, Science.

[107]  P. Rayner,et al.  The utility of remotely sensed CO2 concentration data in surface source inversions , 2001 .

[108]  Edward T. Olsen,et al.  Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide , 2016 .

[109]  Ralph A. Kahn,et al.  Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean , 2001 .

[110]  J. Loesel,et al.  An improved microcarb dispersive instrumental concept for the measurement of greenhouse gases concentration in the atmosphere , 2017, International Conference on Space Optics.

[111]  R. Pavlick,et al.  The OCO-3 mission; measurement objectives and expected performance based on one year of simulated data , 2018 .

[112]  V. M. Devi,et al.  A multispectrum nonlinear least squares fitting technique , 1995 .

[113]  Tatsuya Yokota,et al.  Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results , 2009 .

[114]  Akihiko Kuze,et al.  Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases , 2013 .

[115]  L. Brown,et al.  Fourier transform infrared spectroscopy measurements of H2O-broadened half-widths of CO2 at 4.3 μmThis article is part of a Special Issue on Spectroscopy at the University of New Brunswick in honour of Colan Linton and Ron Lees. , 2009 .

[116]  James B. Abshire,et al.  Calibration of the Total Carbon Column Observing Network using aircraft profile data , 2010 .

[117]  Yukio Yoshida,et al.  TCCON Philippines: First Measurement Results, Satellite Data and Model Comparisons in Southeast Asia , 2017, Remote. Sens..

[118]  M. Dubey,et al.  Intercomparability of X CO 2 and X CH 4 from the United States TCCON sites , 2016 .