Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene.

[1]  Ping Sheng,et al.  Grain size control in the fabrication of large single-crystal bilayer graphene structures. , 2015, Nanoscale.

[2]  R. Xiang,et al.  Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene. , 2014, ACS nano.

[3]  Cyrile Deranlot,et al.  Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction , 2014, Journal of the American Chemical Society.

[4]  M. Dresselhaus,et al.  Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition. , 2014, ACS nano.

[5]  P. Ajayan,et al.  Controllable and Rapid Synthesis of High-Quality and Large-Area Bernal Stacked Bilayer Graphene Using Chemical Vapor Deposition , 2014 .

[6]  Carl W. Magnuson,et al.  The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper , 2013, Science.

[7]  M. Willinger,et al.  Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper , 2013, Nano letters.

[8]  N. Lavrik,et al.  Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure , 2013 .

[9]  X. Duan,et al.  Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene , 2013, Nature Communications.

[10]  J. Kong,et al.  Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy. , 2013, Nano letters.

[11]  J. Tour,et al.  Large-area Bernal-stacked bi-, tri-, and tetralayer graphene. , 2012, ACS nano.

[12]  J. Tour,et al.  Toward the synthesis of wafer-scale single-crystal graphene on copper foils. , 2012, ACS nano.

[13]  X. Duan,et al.  High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. , 2012, ACS nano.

[14]  E. Saiz,et al.  Activation energy paths for graphene nucleation and growth on Cu. , 2012, ACS nano.

[15]  M. Batzill The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects , 2012 .

[16]  A. Krasheninnikov,et al.  The Role of Stable and Mobile Carbon Adspecies in Copper- Promoted Graphene Growth , 2012 .

[17]  S. Louie,et al.  Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. , 2012, Physical review letters.

[18]  M. Fuhrer,et al.  Dual-gated bilayer graphene hot-electron bolometer. , 2011, Nature nanotechnology.

[19]  M. Chhowalla,et al.  A review of chemical vapour deposition of graphene on copper , 2011 .

[20]  Hui Li,et al.  Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. , 2011, Nano letters.

[21]  Jinlong Yang,et al.  First-Principles Thermodynamics of Graphene Growth on Cu Surfaces , 2011, 1101.3851.

[22]  S. Pei,et al.  Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. , 2010, Nature materials.

[23]  Z. Zhong,et al.  Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. , 2010, Nano letters.

[24]  Pablo Jarillo-Herrero,et al.  Electronic transport in dual-gated bilayer graphene at large displacement fields. , 2010, Physical review letters.

[25]  S. Louie,et al.  Electronic transport in polycrystalline graphene. , 2010, Nature materials.

[26]  Zhenhua Ni,et al.  Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. , 2010, Small.

[27]  Luigi Colombo,et al.  Evolution of graphene growth on Ni and Cu by carbon isotope labeling. , 2009, Nano letters.

[28]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[29]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[30]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[31]  E. .. Mittemeijer,et al.  The solubility of C in solid Cu , 2004 .

[32]  I. Chorkendorff,et al.  The interaction of CH4 at high temperatures with clean and oxygen precovered Cu(100) , 1992 .