The Florida red tide dinoflagellate Karenia brevis: New insights into cellular and molecular processes underlying bloom dynamics

[1]  M. Twiner,et al.  Comparative analysis of two algicidal bacteria active against the red tide dinoflagellate Karenia brevis , 2008 .

[2]  F. V. Van Dolah,et al.  The toxic dinoflagellate Karenia brevis encodes novel type I-like polyketide synthases containing discrete catalytic domains. , 2008, Protist.

[3]  G. Doucette,et al.  Influence of microbial interactions on the susceptibility of Karenia spp. to algicidal bacteria , 2008 .

[4]  C. Santamaria,et al.  PCR Amplification of Microsatellites from Single Cells of Karenia brevis Preserved in Lugol’s Iodine Solution , 2008, Marine Biotechnology.

[5]  M. Twiner,et al.  Fate and distribution of brevetoxin (PbTx) following lysis of Karenia brevis by algicidal bacteria, including analysis of open A-ring derivatives. , 2007, Toxicon : official journal of the International Society on Toxinology.

[6]  F. V. Van Dolah,et al.  Spliced Leader RNA‐Mediated trans‐Splicing in a Dinoflagellate, Karenia brevis , 2007, The Journal of eukaryotic microbiology.

[7]  F. V. Van Dolah,et al.  MICROARRAY ANALYSIS OF DIURNAL‐ AND CIRCADIAN‐REGULATED GENES IN THE FLORIDA RED‐TIDE DINOFLAGELLATE KARENIA BREVIS (DINOPHYCEAE) 1 , 2007 .

[8]  D. Kamykowski,et al.  A COMPARISON OF PHOTORESPONSE AMONG TEN DIFFERENT KARENIA BREVIS (DINOPHYCEAE) ISOLATES 1 , 2007 .

[9]  E. Starr Hazard,et al.  CHARACTERIZATION OF A DINOFLAGELLATE CRYPTOCHROME BLUE‐LIGHT RECEPTOR WITH A POSSIBLE ROLE IN CIRCADIAN CONTROL OF THE CELL CYCLE 1 , 2007 .

[10]  T. Gaasterland,et al.  Spliced leader RNA trans-splicing in dinoflagellates , 2007, Proceedings of the National Academy of Sciences.

[11]  B. Schaeffer Biochemical Analysis of Diel Vertical Migration in the Red Tide Dinoflagellate Karenia brevis , 2007 .

[12]  Mark A Ragan,et al.  A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution , 2007, BMC Genomics.

[13]  D. Kamykowski,et al.  Nitrate uptake by Karenia brevis. II. Behavior and uptake physiology in a nitrate-depleted mesocosm with a bottom nutrient source , 2006 .

[14]  D. Kamykowski,et al.  Nitrate uptake by Karenia brevis. I. Influences of prior environmental exposure and biochemical state on diel uptake of nitrate , 2006 .

[15]  Debashish Bhattacharya,et al.  Cyanobacterial Contribution to Algal Nuclear Genomes Is Primarily Limited to Plastid Functions , 2006, Current Biology.

[16]  D. Kamykowski,et al.  Comparison of swimming speed and photophysiological responses to different external conditions among three Karenia brevis strains , 2006 .

[17]  M. Renshaw,et al.  Microsatellite DNA markers for population genetic studies in the dinoflagellate Karenia brevis , 2006 .

[18]  K. Edwards,et al.  Six new microsatellite markers for the toxic marine dinoflagellate Alexandrium tamarense , 2006 .

[19]  Jan-Fang Cheng,et al.  Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis. , 2006, Molecular biology and evolution.

[20]  G. Janowitz,et al.  Modeled Karenia brevis accumulation in the vicinity of a coastal nutrient front , 2006 .

[21]  K. Steidinger,et al.  Effect of salinity on the distribution, growth, and toxicity of Karenia spp. , 2006 .

[22]  Debashish Bhattacharya,et al.  Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. , 2006, Molecular biology and evolution.

[23]  D. Kulis,et al.  Development of microsatellite markers in the toxic dinoflagellate Alexandrium minutum (Dinophyceae) , 2006 .

[24]  C. Sinigalliano,et al.  Localization of polyketide synthase encoding genes to the toxic dinoflagellate Karenia brevis. , 2005, Phytochemistry.

[25]  M. Sieracki,et al.  Phylogenetic Diversity and Specificity of Bacteria Closely Associated with Alexandrium spp. and Other Phytoplankton , 2005, Applied and Environmental Microbiology.

[26]  Michele Barbier,et al.  Gene Expression in Florida Red Tide Dinoflagellate Karenia brevis: Analysis of an Expressed Sequence Tag Library and Development of DNA Microarray , 2005, Marine Biotechnology.

[27]  M. Soares,et al.  Insights into a dinoflagellate genome through expressed sequence tag analysis , 2005, BMC Genomics.

[28]  D. Bhattacharya,et al.  Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. , 2005, Molecular biology and evolution.

[29]  K. Goodwin,et al.  A DNA hybridization assay to identify toxic dinoflagellates in coastal waters: detection of Karenia brevis in the Rookery Bay National Estuarine Research Reserve , 2005 .

[30]  F. V. Van Dolah,et al.  Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. , 2004, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[31]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[32]  Farooq Azam,et al.  Algicidal Bacteria in the Sea and their Impact on Algal Blooms1 , 2004, The Journal of eukaryotic microbiology.

[33]  C. Delwiche,et al.  Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. , 2004, Protist.

[34]  T. Wilcox,et al.  PCP gene family in Symbiodinium from Hippopus hippopus: low levels of concerted evolution, isoform diversity, and spectral tuning of chromophores. , 2003, Molecular biology and evolution.

[35]  Senjie Lin,et al.  COMPLEX GENE STRUCTURE OF THE FORM II RUBISCO IN THE DINOFLAGELLATE PROROCENTRUM MINIMUM (DINOPHYCEAE) 1 , 2003 .

[36]  M. Barbier,et al.  Permanent Expression of a Cyclin B Homologue in the Cell Cycle of the Dinoflagellate Karenia brevis , 2003, The Journal of eukaryotic microbiology.

[37]  K. Steidinger Red Tides and Other Harmful Algal Blooms , 2003 .

[38]  G. Hallegraeff,et al.  Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary , 2002 .

[39]  G. Kennaway,et al.  In situ identification and localization of bacteria associated with Gyrodinium instriatum (Gymnodiniales, Dinophyceae) by electron and confocal microscopy , 2002 .

[40]  G. Doucette,et al.  Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae) , 2002 .

[41]  M. Busman,et al.  No difference found in ribosomal DNA sequences from physiologically diverse clones of Karenia brevis (Dinophyceae) from the Gulf of Mexico , 2002 .

[42]  B. Green,et al.  Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Paul,et al.  A Filterable Lytic Agent Obtained from a Red Tide Bloom That Caused Lysis of Karenia brevis (Gymnodinum breve) Cultures , 2002 .

[44]  D. Kirchman The ecology of Cytophaga-Flavobacteria in aquatic environments. , 2002, FEMS microbiology ecology.

[45]  Oscar Schofield,et al.  Photophysiological responses of the toxic red-tide dinoflagellate Gymnodinium breve (Dinophyceae) under natural sunlight , 2001 .

[46]  R. Reissbrodt,et al.  Siderophores in marine coastal waters and their relevance for iron uptake by phytoplankton: experiments with the diatom Phaeodactylum tricornutum , 2001 .

[47]  F. V. Van Dolah,et al.  Cell cycle regulation in a dinoflagellate, Amphidinium operculatum: identification of the diel entraining cue and a possible role for cyclic AMP. , 2001, Journal of experimental marine biology and ecology.

[48]  V. Norris,et al.  Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. , 2001, Biochimie.

[49]  Robert J. Schaffer,et al.  Microarray Analysis of Diurnal and Circadian-Regulated Genes in Arabidopsis , 2001, The Plant Cell.

[50]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[51]  D. Kamykowski,et al.  A dinoflagellate adaptive behavior model: response to internal biochemical cues , 2000 .

[52]  C. Delwiche,et al.  Phylogenetic analyses indicate that the 19'Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. , 2000, Molecular biology and evolution.

[53]  H. Moreau,et al.  Morphology and behaviour of dinoflagellate chromosomes during the cell cycle and mitosis. , 2000, Journal of cell science.

[54]  R. Reed,et al.  GEOTAXIS/PHOTOTAXIS AND BIOCHEMICAL PATTERNS IN HETEROCAPSA (=CACHONINA) ILLDEFINA (DINOPHYCEAE) DURING DIEL VERTICAL MIGRATIONS , 1999 .

[55]  F. V. Van Dolah,et al.  DIEL PHASING OF THE CELL‐CYCLE IN THE FLORIDA RED TIDE DINOFLAGELLATE, GYMNODINIUM BREVE , 1999 .

[56]  G. Doucette,et al.  ALGICIDAL BACTERIA ACTIVE AGAINST GYMNODINIUM BREVE (DINOPHYCEAE). I. BACTERIAL ISOLATION AND CHARACTERIZATION OF KILLING ACTIVITY1,3 , 1999 .

[57]  T. Cavalier-smith,et al.  Single gene circles in dinoflagellate chloroplast genomes , 1999, Nature.

[58]  M. Otterlei,et al.  Post‐replicative base excision repair in replication foci , 1999, The EMBO journal.

[59]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[60]  G. Hallegraeff,et al.  GENETIC VARIATION AMONG STRAINS OF THE TOXIC DINOFLAGELLATE GYMNODINIUM CATENATUM (DINOPHYCEAE) , 1999 .

[61]  Daniel Kamykowski,et al.  Biochemical relationships with the orientation of the autotrophic dinoflagellate Gymnodinium breve under nutrient replete conditions , 1998 .

[62]  D. Morse,et al.  CHARACTERIZATION AND MOLECULAR PHYLOGENYOF A PROTEIN KINASE cDNA FROM THE DINOFLAGELLATE GONYAULAX (DINOPHYCEAE) 1 , 1997 .

[63]  D. Morse,et al.  Structure and organization of the peridinin-chlorophyll a-binding protein gene in Gonyaulax polyedra , 1997, Molecular and General Genetics MGG.

[64]  T. Nilsen,et al.  Most mRNAs in the nematode Ascaris lumbricoides are trans-spliced: a role for spliced leader addition in translational efficiency. , 1995, RNA.

[65]  G. Drouin,et al.  The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. , 1995, Molecular biology and evolution.

[66]  G. Doucette,et al.  Interactions between bacteria and harmful algae: a review. , 1995, Natural toxins.

[67]  I. Carré,et al.  Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. , 1993, Journal of cell science.

[68]  T. Nishijima,et al.  Gymnodinium nagasakiense赤潮の発生・消滅に関与する細菌の分布とその効果 , 1991 .

[69]  K. Nakanishi,et al.  Biosynthetic studies of brevetoxins, potent neurotoxins produced by the dinoflagellate Gymnodinium breve , 1989 .

[70]  K. Nakanishi,et al.  Biosynthetic Origins and Assignments of 13C NMR Peaks of Brevetoxin B , 1987 .

[71]  Y. Shimizu,et al.  Biosynthesis of brevetoxins. Evidence for the mixed origin of the backbone carbon chain and possible involvement of dicarboxylic acids , 1987 .

[72]  K. Nakanishi,et al.  Biosynthetic origins and assignments of carbon 13 NMR peaks of brevetoxin B. , 1986, Journal of the American Chemical Society.

[73]  J. Clardy,et al.  Structure of brevetoxin A (GB-1 toxin), the most potent toxin in the Florida red tide organism Gymnodinium breve (Ptychodiscus brevis). , 1986, Journal of the American Chemical Society.

[74]  M. Jones,et al.  Isolation and Properties of Isolated Nuclei from the Florida Red Tide Dinoflagellate Gymnodinium breve (Davis)1 , 1982 .

[75]  J. Clardy,et al.  Isolation and structure of brevetoxin B from the "red tide" dinoflagellate Ptychodiscus brevis (Gymnodinium breve) , 1981 .

[76]  D. F. Martin,et al.  Effects of salinity on synthesis of DNA, acidic polysaccharide, and ichthyotoxin in Gymnodinium breve , 1974 .

[77]  C. C. Davis Gymnodinium Brevis Sp. Nov., A Cause of Discolored Water and Animal Mortality in the Gulf of Mexico , 1948, Botanical Gazette.

[78]  J. Burkholder Harmful Algal Blooms , 2009 .

[79]  R. Litaker,et al.  Relationships among water column toxins, cell abundance and chlorophyll concentrations during Karenia brevis blooms , 2008 .

[80]  K. Fukami,et al.  Distribution of Bacteria Influential on the Development and the Decay of Gymnodinium nagasakiense Red Tide and Their Effects on Algal Growth , 2007 .

[81]  G. Doucette,et al.  Relationships Between Bacteria and Harmful Algae , 2006 .

[82]  S. Morton,et al.  Development and application of LSU rRNA probes for Karenia brevis in the Gulf of Mexico, USA , 2005 .

[83]  Debashish Bhattacharya,et al.  Photosynthetic eukaryotes unite: endosymbiosis connects the dots. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[84]  Jose V. Lopez,et al.  Polyketide Synthase Genes from Marine Dinoflagellates , 2003, Marine Biotechnology.

[85]  Scott P. Milroy,et al.  Coupled Biophysical Models of Florida Red Tides , 2002 .

[86]  V. Trainer,et al.  Harmful algal blooms in the PICES region of the North Pacific , 2002 .

[87]  J R Jacobsen,et al.  Tolerance and specificity of polyketide synthases. , 1999, Annual review of biochemistry.

[88]  R. Reed,et al.  Relationships between geotaxis/phototaxis and diel vertical migration in autotrophic dinoflagellates , 1998 .

[89]  J. W. Hastings,et al.  The mRNA level of the circadian regulated Gonyaulax luciferase remains constant over the cycle. , 1998, Chronobiology international.

[90]  Donald M. Anderson,et al.  Physiological ecology of harmful algal blooms , 1998 .

[91]  R. Davis Spliced leader RNA trans-splicing in metazoa. , 1996, Parasitology today.

[92]  P. Milos,et al.  Circadian regulation of bioluminescence in Gonyaulax involves translational control. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Donald M. Anderson,et al.  Toxic Marine Phytoplankton , 1987 .

[94]  D. Sigee Structural DNA and genetically active DNA in dinoflagellate chromosomes. , 1983, Bio Systems.

[95]  The Aquila Digital Community The Aquila Digital Community Red Tides In the Gulf of Mexico: Where, When, and Why? Red Tides In the Gulf of Mexico: Where, When, and Why? , 2022 .

[96]  H. Paerl,et al.  Harmful Algae , 2022 .