Magma system and equilibrium depth of the Cenozoic basalts in the central North China craton

[1]  F. Chu,et al.  Diverse early diagenetic processes of ferromanganese nodules from the eastern Pacific Ocean: evidence from mineralogy and in-situ geochemistry , 2022, International Geology Review.

[2]  Xiaolin Xiong,et al.  A New Oxybarometer for Basalts Based on Olivine‐Melt Mn‐Fe2+ Exchange Coefficient and FeT/Mn Ratios in Olivine and Melt , 2022, Journal of Geophysical Research: Solid Earth.

[3]  Rongke Xu,et al.  Origin of low-MgO primitive intraplate alkaline basalts from partial melting of carbonate-bearing eclogite sources , 2022, Geochimica et Cosmochimica Acta.

[4]  F. Moynier,et al.  Deciphering the origin of a basanite-alkali basalt-tholeiite suite using Zn isotopes , 2021, Goldschmidt2022 abstracts.

[5]  B. Kjarsgaard,et al.  Plume-driven recratonization of deep continental lithospheric mantle , 2021, Nature.

[6]  Ji-Feng Ying,et al.  Nature and secular evolution of the lithospheric mantle beneath the North China Craton , 2021, Science China Earth Sciences.

[7]  Y. Niu Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth – A review and new perspectives , 2021 .

[8]  R. Dasgupta,et al.  Thermobarometry of CO2-rich, silica-undersaturated melts constrains cratonic lithosphere thinning through time in areas of kimberlitic magmatism , 2020 .

[9]  J. Blundy,et al.  Effect of redox on Fe–Mg–Mn exchange between olivine and melt and an oxybarometer for basalts , 2020, Contributions to Mineralogy and Petrology.

[10]  Jin-Hui Yang,et al.  Mesoproterozoic (~1.32 Ga) modification of lithospheric mantle beneath the North China craton caused by break-up of the Columbia supercontinent , 2020, Precambrian Research.

[11]  Y. Niu,et al.  The Lithospheric Thickness Control on the Compositional Variation of Continental Intraplate Basalts: A Demonstration Using the Cenozoic Basalts and Clinopyroxene Megacrysts From Eastern China , 2020, Journal of Geophysical Research: Solid Earth.

[12]  Y. Niu,et al.  Lithosphere thickness controls continental basalt compositions: An illustration using Cenozoic basalts from eastern China , 2020 .

[13]  Bing Xu,et al.  First radiocarbon dating of a Holocene eruption of the Datong volcanic field, eastern China , 2019, Journal of Volcanology and Geothermal Research.

[14]  R. Walker,et al.  Destruction of the North China Craton in the Mesozoic , 2019, Annual Review of Earth and Planetary Sciences.

[15]  R. Sparks,et al.  Vertically extensive and unstable magmatic systems: A unified view of igneous processes , 2017, Science.

[16]  Xiaohong Wang,et al.  Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen , 2017 .

[17]  R. Farr,et al.  Crystal settling and convection in the Shiant Isles Main Sill , 2017, Contributions to Mineralogy and Petrology.

[18]  Ling Chen,et al.  Lithospheric structure beneath the central and western North China Craton and adjacent regions from S-receiver function imaging , 2016, Geophysical Journal International.

[19]  Yinghuai Lu,et al.  Late Permian high-Mg andesite and basalt association from northern Liaoning, North China: Insights into the final closure of the Paleo-Asian ocean and the orogen–craton boundary , 2016 .

[20]  D. Green,et al.  Mantle-derived magmas: intraplate, hot-spots and mid-ocean ridges , 2015 .

[21]  Shixu Jia,et al.  The P-wave velocity structure of the lithosphere of the North China Craton—Results from the Wendeng-Alxa Left Banner deep seismic sounding profile , 2014, Science China Earth Sciences.

[22]  Jin-Hui Yang,et al.  Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton , 2014 .

[23]  V. Kamenetsky,et al.  Melting and Phase Relations of Carbonated Eclogite at 9–21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle , 2013 .

[24]  M. Hirschmann,et al.  Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa , 2013 .

[25]  M. Hirschmann,et al.  Carbon-dioxide-rich silicate melt in the Earth’s upper mantle , 2013, Nature.

[26]  R. Carlson,et al.  Comparative Sr–Nd–Hf–Os–Pb isotope systematics of xenolithic peridotites from Yangyuan, North China Craton: Additional evidence for a Paleoproterozoic age , 2012 .

[27]  Wei Yang,et al.  Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle , 2012 .

[28]  Yue-heng Yang,et al.  Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle , 2011 .

[29]  S. Kohn,et al.  Experimental Simulation of Closed-System Degassing in the System Basalt–H2O–CO2–S–Cl , 2011 .

[30]  Cin-Ty A. Lee,et al.  Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting , 2011 .

[31]  R. Walker,et al.  Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton , 2011 .

[32]  L. Danyushevsky,et al.  Petrolog3: Integrated software for modeling crystallization processes , 2011 .

[33]  C. Herzberg Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins , 2011 .

[34]  Cin-Ty A. Lee,et al.  Building and Destroying Continental Mantle , 2011 .

[35]  B. Windley,et al.  Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction , 2010, American Journal of Science.

[36]  W. Griffin,et al.  Diachronous decratonization of the Sino-Korean craton: Geochemistry of mantle xenoliths from North Korea , 2010 .

[37]  G. Gudfinnsson,et al.  Experimentally dictated stability of carbonated oceanic crust to moderately great depths in the Earth: Results from the solidus determination in the system CaO-MgO-Al2O3-SiO2-CO2 , 2010 .

[38]  A. Rosenthal,et al.  The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar , 2009 .

[39]  Ling Chen,et al.  Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton , 2009 .

[40]  Ling Chen,et al.  Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration , 2009 .

[41]  Huan-Ning Qiu,et al.  Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China , 2009 .

[42]  Liang Zhao,et al.  Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton , 2008 .

[43]  M. Perfit,et al.  Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling , 2007 .

[44]  A. Sobolev,et al.  The Amount of Recycled Crust in Sources of Mantle-Derived Melts , 2007, Science.

[45]  W. Griffin,et al.  Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China , 2006 .

[46]  Hong‐fu Zhang,et al.  Asthenosphere–lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton , 2006 .

[47]  Dapeng Zhao,et al.  High‐resolution mantle tomography of China and surrounding regions , 2006 .

[48]  K. Putirka Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes , 2005 .

[49]  W. Griffin,et al.  Late Mesozoic-Eocene Mantle Replacement beneath the Eastern North China Craton: Evidence from the Paleozoic and Cenozoic Peridotite Xenoliths , 2005 .

[50]  Jinlong Ma,et al.  Contrasting Cenozoic Lithospheric Evolution and Architecture in the Western and Eastern Sino‐Korean Craton: Constraints from Geochemistry of Basalts and Mantle Xenoliths , 2004, The Journal of Geology.

[51]  R. Carlson,et al.  Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen , 2004 .

[52]  M. Hirschmann,et al.  High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts , 2003 .

[53]  B. Windley,et al.  Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt , 2003 .

[54]  Richard F. Katz,et al.  A new parameterization of hydrous mantle melting , 2003 .

[55]  C. Herzberg,et al.  Plume-Associated Ultramafic Magmas of Phanerozoic Age , 2002 .

[56]  R. Carlson,et al.  Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton , 2002 .

[57]  W. Griffin,et al.  Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution , 2001 .

[58]  E. Takahashi,et al.  Subsolidus and melting experiments of a K-rich basaltic composition to 27 GPa: Implication for the behavior of potassium in the mantle , 1999 .

[59]  C. Herzberg,et al.  Phase equilibrium constraints on the origin of basalts, picrites, and komatiites , 1998 .

[60]  G. Jenner,et al.  Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS , 1996 .

[61]  A. Nutman,et al.  Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton , 1992 .

[62]  P. Hooper,et al.  The Cenozoic Basaltic Rocks of Eastern China: Petrology and Chemical Composition , 1991 .

[63]  A. Basu,et al.  Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China : implications for their origin from suboceanic-type mantle reservoirs , 1991 .

[64]  Yan Song,et al.  Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle , 1990 .

[65]  Yan Song,et al.  Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt , 1990 .

[66]  R. Sack,et al.  Experimental Petrology of Melilite Nephelinites , 1988 .

[67]  R. Armstrong,et al.  Cenozoic volcanic rocks of eastern China — secular and geographic trends in chemistry and strontium isotopic composition , 1982 .

[68]  P. Roeder,et al.  Olivine-liquid equilibrium , 1970 .

[69]  D. Pearson,et al.  3.6 – The Formation and Evolution of Cratonic Mantle Lithosphere – Evidence from Mantle Xenoliths , 2014 .

[70]  C. Lo,et al.  Phlogopite40Ar/39Ar geochronology of mantle xenoliths from the North China Craton: Constraints on the eruption ages of Cenozoic basalts , 2013 .

[71]  Zhu Yu Sources and petrogenesis of the Cenozoic alkali basalts in Hebi,eastern North China Craton:Geochemical and Sr-Nd-Hf isotopic evidence , 2012 .

[72]  C. Key,et al.  Re-Os isotope geochemistry of basalts from Hannuoba,North China:Evidence for Re volatile loss and crust-mantle interaction , 2010 .

[73]  Keith Putirka,et al.  Thermometers and Barometers for Volcanic Systems , 2008 .

[74]  M. Walter Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere , 1998 .

[75]  S. Hart,et al.  Experimental cpx/melt partitioning of 24 trace elements , 1993 .