A Persistent Weisfeiler-Lehman Procedure for Graph Classification

The Weisfeiler–Lehman graph kernel exhibits competitive performance in many graph classification tasks. However, its subtree features are not able to capture connected components and cycles, topological features known for characterising graphs. To extract such features, we leverage propagated node label information and transform unweighted graphs into metric ones. This permits us to augment the subtree features with topological information obtained using persistent homology, a concept from topological data analysis. Our method, which we formalise as a generalisation of Weisfeiler–Lehman subtree features, exhibits favourable classification accuracy and its improvements in predictive performance are mainly driven by including cycle information.

[1]  Jan Ramon,et al.  Expressivity versus efficiency of graph kernels , 2003 .

[2]  Chen Cai,et al.  A simple yet effective baseline for non-attribute graph classification , 2018, ArXiv.

[3]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[4]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[5]  J. Jonsson Simplicial complexes of graphs , 2007 .

[6]  Danielle S. Bassett,et al.  Classification of weighted networks through mesoscale homological features , 2015, J. Complex Networks.

[7]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[8]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[9]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  P. Dobson,et al.  Distinguishing enzyme structures from non-enzymes without alignments. , 2003, Journal of molecular biology.

[11]  A. A. LEMAN,et al.  THE REDUCTION OF A GRAPH TO CANONICAL FORM AND THE ALGEBRA WHICH APPEARS THEREIN , 2018 .

[12]  Ashwin Srinivasan,et al.  The Predictive Toxicology Challenge 2000-2001 , 2001, Bioinform..

[13]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[14]  Pinar Yanardag,et al.  Deep Graph Kernels , 2015, KDD.

[15]  Bei Wang,et al.  A Kernel for Multi-Parameter Persistent Homology , 2018, Comput. Graph. X.

[16]  Hans-Peter Kriegel,et al.  Protein function prediction via graph kernels , 2005, ISMB.

[17]  Don Sheehy,et al.  Linear-Size Approximations to the Vietoris–Rips Filtration , 2012, Discrete & Computational Geometry.

[18]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[19]  Nils M. Kriege,et al.  On Valid Optimal Assignment Kernels and Applications to Graph Classification , 2016, NIPS.

[20]  Sugiyama Mahito,et al.  Halting in Random Walk Kernels , 2015 .

[21]  Hans-Peter Kriegel,et al.  Shortest-path kernels on graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[22]  Chao Chen,et al.  An output-sensitive algorithm for persistent homology , 2011, SoCG '11.

[23]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[24]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[25]  B. Douglas The Weisfeiler-Lehman Method and Graph Isomorphism Testing , 2011, 1101.5211.

[26]  Thomas Gärtner,et al.  Cyclic pattern kernels for predictive graph mining , 2004, KDD.

[27]  Regina Barzilay,et al.  Deriving Neural Architectures from Sequence and Graph Kernels , 2017, ICML.

[28]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[29]  Danijela Horak,et al.  Persistent homology of complex networks , 2008, 0811.2203.

[30]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[31]  George Karypis,et al.  Comparison of descriptor spaces for chemical compound retrieval and classification , 2006, Sixth International Conference on Data Mining (ICDM'06).

[32]  Yijian Xiang,et al.  RetGK: Graph Kernels based on Return Probabilities of Random Walks , 2018, NeurIPS.

[33]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[34]  C. J. Carstens TOPOLOGY OF COMPLEX NETWORKS: MODELS AND ANALYSIS , 2017, Bulletin of the Australian Mathematical Society.

[35]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[36]  Karsten M. Borgwardt,et al.  Fast subtree kernels on graphs , 2009, NIPS.

[37]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[38]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[39]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[40]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[41]  A. Debnath,et al.  Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. , 1991, Journal of medicinal chemistry.

[42]  Steve Oudot,et al.  Sliced Wasserstein Kernel for Persistence Diagrams , 2017, ICML.

[43]  Karsten M. Borgwardt,et al.  Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology , 2018, ICLR.

[44]  László Babai,et al.  Canonical labelling of graphs in linear average time , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[45]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[46]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[47]  E. Munch A User's Guide to Topological Data Analysis , 2017, J. Learn. Anal..

[48]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[49]  Kenji Fukumizu,et al.  Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor , 2017, J. Mach. Learn. Res..

[50]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .

[51]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[52]  Heike Leitte,et al.  Clique Community Persistence: A Topological Visual Analysis Approach for Complex Networks , 2018, IEEE Transactions on Visualization and Computer Graphics.

[53]  R. Ho Algebraic Topology , 2022 .

[54]  Frédéric Chazal,et al.  Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..

[55]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.