An Interpolation Procedure for List Decoding Reed–Solomon Codes Based on Generalized Key Equations

The key step of syndrome-based decoding of Reed-Solomon codes up to half the minimum distance is to solve the so-called Key Equation. List decoding algorithms, capable of decoding beyond half the minimum distance, are based on interpolation and factorization of multivariate polynomials. This article provides a link between syndrome-based decoding approaches based on Key Equations and the interpolation-based list decoding algorithms of Guruswami and Sudan for Reed-Solomon codes. The original interpolation conditions of Guruswami and Sudan for Reed-Solomon codes are reformulated in terms of a set of Key Equations. These equations provide a structured homogeneous linear system of equations of Block-Hankel form, that can be solved by an adaption of the Fundamental Iterative Algorithm. For an (n,k) Reed-Solomon code, a multiplicity s and a list size l , our algorithm has time complexity O(ls4n2).

[1]  Peter Beelen,et al.  Key equations for list decoding of Reed-Solomon codes and how to solve them , 2010, J. Symb. Comput..

[2]  Tom Høholdt,et al.  A Course in Error-Correcting Codes (EMS Textbooks in Mathematics) , 2004 .

[3]  Ian F. Blake,et al.  Two new decoding algorithms for Reed-Solomon codes , 2005, Applicable Algebra in Engineering, Communication and Computing.

[4]  Venkatesan Guruswami,et al.  List decoding of error correcting codes , 2001 .

[5]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[6]  Peter Beelen,et al.  The Decoding of Algebraic Geometry Codes , 2008 .

[7]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[8]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[9]  Jean Louis Dornstetter On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.

[10]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[11]  Ian F. Blake,et al.  Fast parallel algorithms for decoding Reed-Solomon codes based on remainder polynomials , 1995, IEEE Trans. Inf. Theory.

[12]  Venkatesan Guruswami,et al.  List Decoding of Error-Correcting Codes (Winning Thesis of the 2002 ACM Doctoral Dissertation Competition) , 2005, Lecture Notes in Computer Science.

[13]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[14]  Ron M. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.

[15]  Ron M. Roth,et al.  Introduction to Coding Theory , 2019, Discrete Mathematics.

[16]  J. Pujol,et al.  Construction of Additive Reed-Muller Codes , 2009 .

[17]  Helmut Hasse Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. , 1936 .

[18]  Peter Beelen,et al.  A Syndrome Formulation of the Interpolation Step in the Guruswami-Sudan Algorithm , 2008, ICMCTA.

[19]  Shojiro Sakata On Fast Interpolation Method for Guruswami-Sudan List Decoding of One-Point Algebraic-Geometry Codes , 2001, AAECC.

[20]  Martin Bossert,et al.  Efficient list-decoding of Reed-Solomon codes with the Fundamental Iterative Algorithm , 2009, 2009 IEEE Information Theory Workshop.

[21]  Daniel Augot,et al.  On the Roth and Ruckenstein equations for the Guruswami-Sudan algorithm , 2008, 2008 IEEE International Symposium on Information Theory.

[22]  Michael Alekhnovich Linear diophantine equations over polynomials and soft decoding of Reed-Solomon codes , 2005, IEEE Trans. Inf. Theory.

[23]  Madhu Sudan,et al.  Highly Resilient Correctors for Polynomials , 1992, Inf. Process. Lett..

[24]  Yuan Zhou Introduction to Coding Theory , 2010 .

[25]  R. McEliece The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes , 2003 .

[26]  Venkatesan Guruswami,et al.  Algorithmic Results in List Decoding , 2006, Found. Trends Theor. Comput. Sci..

[27]  Anna Aarstrand Slaatsveen Decoding of Algebraic Geometry Codes , 2011 .

[28]  Jørn M. Jensen,et al.  On the equivalence of the Berlekamp-Massey and the euclidean algorithms for decoding , 2000, IEEE Trans. Inf. Theory.

[29]  Gui Liang Feng,et al.  A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.

[30]  Martin Bossert,et al.  Collaborative Decoding of Interleaved Reed–Solomon Codes and Concatenated Code Designs , 2009, IEEE Transactions on Information Theory.

[31]  Á. REFERENCES , 1980 .

[32]  Shojiro Sakata,et al.  Finding a Minimal Polynomial Vector Set of a Vector of nD Arrays , 1991, AAECC.

[33]  Maria Bras-Amorós,et al.  From the Euclidean Algorithm for Solving a Key Equation for Dual Reed-Solomon Codes to the Berlekamp-Massey Algorithm , 2009, AAECC.

[34]  Michael Alekhnovich Linear diophantine equations over polynomials and soft decoding of Reed-Solomon codes , 2005, IEEE Transactions on Information Theory.

[35]  Iwan Duursma,et al.  An extension of the order bound for AG codes , 2009 .

[36]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .

[37]  Peter Trifonov Efficient Interpolation in the Guruswami–Sudan Algorithm , 2010, IEEE Transactions on Information Theory.