Color quantization using c-means clustering algorithms

Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. Recent studies have demonstrated the effectiveness of hard c-means (k-means) clustering algorithm in this domain. Other studies reported similar findings pertaining to the fuzzy c-means algorithm. Interestingly, none of these studies directly compared the two types of c-means algorithms. In this study, we implement fast and exact variants of the hard and fuzzy c-means algorithms with several initialization schemes and then compare the resulting quantizers on a diverse set of images. The results demonstrate that fuzzy c-means is significantly slower than hard c-means, and that with respect to output quality the former algorithm is neither objectively nor subjectively superior to the latter.

[1]  Luiz Velho,et al.  Color image quantization by pairwise clustering , 1997, Proceedings X Brazilian Symposium on Computer Graphics and Image Processing.

[2]  Charalambos Strouthopoulos,et al.  Adaptive color reduction , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Yu-Chen Hu,et al.  K-means-based color palette design scheme with the use of stable flags , 2007, J. Electronic Imaging.

[4]  Lale Akarun,et al.  A fuzzy algorithm for color quantization of images , 2002, Pattern Recognit..

[5]  Anthony H. Dekker,et al.  Kohonen neural networks for optimal colour quantization , 1994 .

[6]  M. Emre Celebi,et al.  Improving the performance of k-means for color quantization , 2011, Image Vis. Comput..

[7]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[8]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[9]  P. Prusinkiewicz,et al.  Variance‐based color image quantization for frame buffer display , 1990 .

[10]  Alin Achim,et al.  18th IEEE International Conference on Image Processing, ICIP 2011, Brussels, Belgium, September 11-14, 2011 , 2011, ICIP.

[11]  Gerald Schaefer,et al.  Fuzzy clustering for colour reduction in images , 2009, Telecommun. Syst..

[12]  Paul Scheunders,et al.  A comparison of clustering algorithms applied to color image quantization , 1997, Pattern Recognit. Lett..

[13]  Paul S. Heckbert Color image quantization for frame buffer display , 1982, SIGGRAPH.

[14]  A. Ersak,et al.  A fuzzy colour quantizer for renderers , 1998 .

[15]  Daniel Thalmann,et al.  New Trends in Computer Graphics , 1988, Springer Berlin Heidelberg.

[16]  Doheon Lee,et al.  A novel initialization scheme for the fuzzy c-means algorithm for color clustering , 2004, Pattern Recognit. Lett..

[17]  M. Emre Celebi,et al.  An Effective Color Quantization Method Based on the Competitive Learning Paradigm , 2009, IPCV.

[18]  John F. Kolen,et al.  Reducing the time complexity of the fuzzy c-means algorithm , 2002, IEEE Trans. Fuzzy Syst..

[19]  Pierre Hansen,et al.  NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.

[20]  Joann M. Taylor,et al.  Digital Color Imaging Handbook , 2004 .

[21]  Michael A. Arbib,et al.  An algorithm for competitive learning in clustering problems , 1994, Pattern Recognit..

[22]  Xiaolin Wu,et al.  EFFICIENT STATISTICAL COMPUTATIONS FOR OPTIMAL COLOR QUANTIZATION , 1991 .

[23]  Michael Gervautz,et al.  A simple method for color quantization: octree quantization , 1990 .