Overcoming Noise in Entanglement Distribution.

Noise can be considered the natural enemy of quantum information. An often implied benefit of high-dimensional entanglement is its increased resilience to noise. However, manifesting this potential in an experimentally meaningful fashion is challenging and has never been done before. In infinite dimensional spaces, discretisation is inevitable and renders the effective dimension of quantum states a tunable parameter. Owing to advances in experimental techniques and theoretical tools, we demonstrate an increased resistance to noise by identifying two pathways to exploit high-dimensional entangled states. Our study is based on two separate experiments utilising canonical spatio-temporal properties of entangled photon pairs. Following these different pathways to noise resilience, we are able to certify entanglement in the photonic orbital-angular-momentum and energy-time degrees of freedom up to noise conditions corresponding to a noise fraction of 72 % and 92 % respectively. Our work paves the way towards practical quantum communication systems that are able to surpass current noise and distance limitations, while not compromising on potential device-independence.

[1]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[2]  Ludovico Lami,et al.  Bipartite depolarizing maps , 2016, 1603.02158.

[3]  Robert Fickler,et al.  Twisted photons: new quantum perspectives in high dimensions , 2017, Light: Science & Applications.

[4]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[5]  S. Brierley,et al.  Entanglement detection via mutually unbiased bases , 2012, 1202.5058.

[6]  G. M. Nikolopoulos,et al.  Security bound of two-basis quantum-key-distribution protocols using qudits (10 pages) , 2005, quant-ph/0507221.

[7]  J. Watrous,et al.  All entangled states are useful for channel discrimination. , 2009, Physical review letters.

[8]  Robert Fickler,et al.  Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons , 2018, Quantum.

[9]  Robert W Boyd,et al.  Efficient separation of the orbital angular momentum eigenstates of light , 2013, Nature Communications.

[10]  Leif Katsuo Oxenløwe,et al.  Orbital Angular Momentum States Enabling Fiber-based High-dimensional Quantum Communication , 2018, Physical Review Applied.

[11]  Nicolas Gisin,et al.  Reply to the "Comment on: Testing the speed of 'spooky action at a distance' " , 2008, 0810.4607.

[12]  Robert W. Boyd,et al.  Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables , 2010, Science.

[13]  Shih,et al.  Postselection-free energy-time entanglement. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Guang-Can Guo,et al.  Distribution of high-dimensional orbital angular momentum entanglement at telecom wavelength over 1km of optical fibre , 2018 .

[15]  Fabio Sciarrino,et al.  Air-core fiber distribution of hybrid vector vortex-polarization entangled states , 2019, Advanced Photonics.

[16]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[17]  Nicolas Gisin,et al.  Bell-Type Test of Energy-Time Entangled Qutrits , 2004 .

[18]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[19]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[20]  H. Bechmann-Pasquinucci,et al.  Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.

[21]  R. Boyd,et al.  High-dimensional intracity quantum cryptography with structured photons , 2016, 1612.05195.

[22]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[23]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[24]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[25]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[26]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[27]  Matej Pivoluska,et al.  Measurements in two bases are sufficient for certifying high-dimensional entanglement , 2017, Nature Physics.

[28]  Robert W. Boyd,et al.  Exploring energy-time entanglement Using geometric phase , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[29]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[30]  Marijn A. M. Versteegh,et al.  Entanglement distribution over a 96-km-long submarine optical fiber , 2018, Proceedings of the National Academy of Sciences.

[31]  Christian Kurtsiefer,et al.  Daylight operation of a free space, entanglement-based quantum key distribution system , 2008, 0812.1880.

[32]  Anton Zeilinger,et al.  Experimental access to higher-dimensional entangled quantum systems using integrated optics , 2015, 1502.06504.

[33]  R. Ursin,et al.  Distribution of high-dimensional entanglement via an intra-city free-space link , 2016, Nature Communications.

[34]  A. Zeilinger,et al.  Twisted photon entanglement through turbulent air across Vienna , 2015, Proceedings of the National Academy of Sciences.

[35]  Robert Fickler,et al.  Measuring azimuthal and radial modes of photons. , 2018, Optics express.

[36]  A. Zeilinger,et al.  Twisted light transmission over 143 km , 2016, Proceedings of the National Academy of Sciences.

[37]  Marcus Huber,et al.  Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems , 2013, 1307.3541.

[38]  Jian Wang,et al.  Multi-dimensional entanglement transport through single-mode fibre , 2019 .

[39]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[40]  Rupert Ursin,et al.  Feasibility of 300 km quantum key distribution with entangled states , 2009, 1007.4645.

[41]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[42]  Valerio Scarani,et al.  Security proof for quantum key distribution using qudit systems , 2010, 1003.5464.

[43]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[44]  John C Howell,et al.  Large-alphabet quantum key distribution using energy-time entangled bipartite States. , 2007, Physical review letters.

[45]  Hiroki Takesue,et al.  Entanglement distribution over 300 km of fiber. , 2013, Optics express.

[46]  Stefan Bauml,et al.  Every entangled state provides an advantage in classical communication , 2018, Journal of Mathematical Physics.

[47]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[48]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[49]  Stephen M. Barnett,et al.  Information communicated by entangled photon pairs , 2012, 1203.1537.

[50]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[51]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[52]  Taehyun Kim,et al.  Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[53]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[54]  Yang Li,et al.  Long-distance free-space quantum key distribution in daylight towards inter-satellite communication , 2017, Nature Photonics.

[55]  Zheshen Zhang,et al.  Entanglement's benefit survives an entanglement-breaking channel. , 2013, Physical review letters.

[56]  Marcus Huber,et al.  Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement , 2013, 1301.2455.

[57]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[58]  Otfried Gühne,et al.  Characterizing Genuine Multilevel Entanglement. , 2017, Physical review letters.

[59]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  Hiroki Takesue,et al.  Four-dimensional entanglement distribution over 100 km , 2018, Scientific Reports.

[61]  John M Donohue,et al.  Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs. , 2017, Physical review letters.

[62]  Juan P. Torres,et al.  High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion , 2012, 1208.4531.

[63]  D. Englund,et al.  Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding , 2015 .

[64]  Nicolai Friis,et al.  Entanglement certification from theory to experiment , 2018, Nature Reviews Physics.