The Syntactic Graph of a Sofic Shift

We define a new invariant for the conjugacy of irreducible sofic shifts. This invariant, that we call the syntactic graph of a sofic shift, is the directed acyclic graph of characteristic groups of the non null regular \(\mathcal{D}\)-classes of the syntactic semigroup of the shift.

[1]  On a syntactically defined invariant of symbolic dynamics , 2000, Ergodic Theory and Dynamical Systems.

[2]  Wolfgang Krieger On sofic systems II , 1984 .

[3]  Danièle Beauquier Minimal Automaton for a Factorial, Transitive and Rational Language , 1989, Theor. Comput. Sci..

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  Filippo Mignosi,et al.  Minimal Forbidden Patterns of Multi-Dimensional Shifts , 2005, Int. J. Algebra Comput..

[6]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[7]  Marie-Pierre Béal,et al.  Puissance extérieure d'un automate déterministe, application au calcul de la fonction zêta d'un système sofique , 1995, RAIRO Theor. Informatics Appl..

[8]  Masakazu Nasu,et al.  Topological conjugacy for sofic systems , 1986, Ergodic Theory and Dynamical Systems.

[9]  N. Jonoska A conjugacy invariant for reducible sofic shifts and its semigroup characterizations , 1998 .

[10]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[11]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[12]  B. Kitchens Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .

[13]  Antonio Restivo,et al.  A Characterization of Strictly Locally Testable Languages and Its Applications to Subsemigroups of a Free Semigroup , 1980, Inf. Control..

[14]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[15]  J. Berstel,et al.  Theory of codes , 1985 .