Progressive proximal expansion of the primate X chromosome centromere.

Previous studies of the pericentromeric region of the human X chromosome short arm (Xp) revealed an age gradient from ancient DNA that contains expressed genes to recent human-specific DNA at the functional centromere. We analyzed the finished sequence of this human genomic region to investigate its evolutionary history. Phylogenetic analysis of >1,500 alpha-satellite monomers from the region revealed the presence of five physical domains, each containing monomers from a distinct phylogenetic clade. The most distal domain contains long interspersed nucleotide element repeats that were active >35 million years ago, whereas the four proximal domains contain more recently active long interspersed nucleotide element repeats. An out-of-register, unequal recombination (i.e., crossover) detected at the edge of the X chromosome-specific alpha-satellite array (DXZ1) may reflect the most recent of a series of punctuating events during evolution that resulted in a proximal physical expansion of the X centromere. The first 18 kb of this array has 97-99% pairwise identity among all 2-kb repeat units. To perform more detailed evolutionary comparisons, we sequenced the junction between the ancient DNA of Xp and the primate-specific alpha satellite in chimpanzee, gorilla, orangutan, vervet, macaque, and baboon. The striking conservation found in all cases supports the ancestral nature of the alpha satellite at this location. These studies demonstrate that the primate X centromere appears to have evolved through repeated expansion events occurring within the central, active region of centromeric DNA, with the newly added sequences then conferring centromere function.

[1]  K. Choo,et al.  Evolutionary dynamics of transposable elements at the centromere. , 2004, Trends in genetics : TIG.

[2]  T. Strachan,et al.  HUMAN GENOME EVOLUTION , 2004 .

[3]  H. Willard,et al.  Analysis of the centromeric regions of the human genome assembly. , 2004, Trends in genetics : TIG.

[4]  G. Karpen,et al.  Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin , 2004, Nature Structural &Molecular Biology.

[5]  D. Haussler,et al.  The structure and evolution of centromeric transition regions within the human genome , 2004, Nature.

[6]  K. Choo,et al.  Building the centromere: from foundation proteins to 3D organization. , 2004, Trends in cell biology.

[7]  Lior Pachter,et al.  VISTA: computational tools for comparative genomics , 2004, Nucleic Acids Res..

[8]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[9]  D. Ward,et al.  Presence and abundance of CENP-B box sequences in great ape subsets of primate-specific α-satellite DNA , 1995, Journal of Molecular Evolution.

[10]  L. Manuelidis Chromosomal localization of complex and simple repeated human DNAs , 1978, Chromosoma.

[11]  J. Puechberty,et al.  Hypothesis: For the Worst and for the Best, L1Hs Retrotransposons Actively Participate in the Evolution of the Human Centromeric Alphoid Sequences , 2004, Chromosome Research.

[12]  C. Andersen,et al.  Active, but not inactive, human centromeres display topoisomerase II activity in vivo , 2004, Chromosome Research.

[13]  C. Farr,et al.  Topoisomerase II: untangling its contribution at the centromere , 2004, Chromosome Research.

[14]  Jean-Michel Claverie,et al.  FusionDB: a database for in-depth analysis of prokaryotic gene fusion events , 2004, Nucleic Acids Res..

[15]  Nancy F. Hansen,et al.  Comparative analyses of multi-species sequences from targeted genomic regions , 2003, Nature.

[16]  K. Sullivan,et al.  Centromeres and Kinetochores From Epigenetics to Mitotic Checkpoint Signaling , 2003, Cell.

[17]  S. Henikoff,et al.  Conflict begets complexity: the evolution of centromeres. , 2002, Current opinion in genetics & development.

[18]  D. Schindelhauer,et al.  Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha-satellite DNA array. , 2002, Genome research.

[19]  W. Earnshaw,et al.  Co‐localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X α‐satellite array , 2002, The EMBO journal.

[20]  Eric D Green,et al.  Parallel construction of orthologous sequence-ready clone contig maps in multiple species. , 2002, Genome research.

[21]  H. Willard,et al.  Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. , 2002, Molecular therapy : the journal of the American Society of Gene Therapy.

[22]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[23]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[24]  Valery Shepelev,et al.  Alpha-satellite DNA of primates: old and new families , 2001, Chromosoma.

[25]  Gary H. Karpen,et al.  Determining centromere identity: cyclical stories and forking paths , 2001, Nature Reviews Genetics.

[26]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[27]  C. Tyler-Smith,et al.  A neocentromere in the DAZ region of the human Y chromosome , 2000, Chromosoma.

[28]  M. Goodman,et al.  The genomic record of Humankind's evolutionary roots. , 1999, American journal of human genetics.

[29]  I. Alexandrov,et al.  Unequal cross‐over is involved in human alpha satellite DNA rearrangements on a border of the satellite domain , 1998, FEBS letters.

[30]  H. Willard,et al.  Orangutan α-satellite monomers are closely related to the human consensus sequence , 1998, Mammalian Genome.

[31]  S Henikoff,et al.  Something from nothing: the evolution and utility of satellite repeats. , 1998, Trends in genetics : TIG.

[32]  H. Masumoto,et al.  Construction of YAC–based mammalian artificial chromosomes , 1998, Nature Biotechnology.

[33]  H. Willard,et al.  Centromeres: the missing link in the development of human artificial chromosomes. , 1998, Current opinion in genetics & development.

[34]  H. Willard,et al.  Physical and genetic mapping of the human X chromosome centromere: repression of recombination. , 1998, Genome research.

[35]  G. Karpen,et al.  The case for epigenetic effects on centromere identity and function. , 1997, Trends in genetics : TIG.

[36]  K. Sullivan,et al.  Chromatin containing CENP-A and α-satellite DNA is a major component of the inner kinetochore plate , 1997, Current Biology.

[37]  Huntington F. Willard,et al.  Chromosome-specific α-satellite DNA from the centromere of chimpanzee chromosome 4 , 1997, Chromosoma.

[38]  M. Ferguson-Smith,et al.  Human centromeric DNAs , 1997, Human Genetics.

[39]  P. Warburton,et al.  Centromeres, CENP-B and Tigger too. , 1997, Trends in genetics : TIG.

[40]  H. Willard,et al.  Formation of de novo centromeres and construction of first-generation human artificial microchromosomes , 1997, Nature Genetics.

[41]  R. Durbin,et al.  A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. , 1995, Gene.

[42]  A. Smit,et al.  Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. , 1995, Journal of molecular biology.

[43]  H. Masumoto,et al.  Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. , 1994, Human molecular genetics.

[44]  D. Ward,et al.  Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. , 1994, Human molecular genetics.

[45]  H. Willard,et al.  Nonrandom localization of recombination events in human alpha satellite repeat unit variants: implications for higher-order structural characteristics within centromeric heterochromatin , 1993, Molecular and cellular biology.

[46]  L. Romanova,et al.  Definition of a new alpha satellite suprachromosomal family characterized by monomeric organization. , 1993, Nucleic acids research.

[47]  H. Masumoto,et al.  Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box , 1992, The Journal of cell biology.

[48]  H. Willard,et al.  Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite. , 1990, Journal of molecular biology.

[49]  H. Willard,et al.  Pulsed-field gel analysis of alpha-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate. , 1990, Genomics.

[50]  W. Earnshaw,et al.  CENP-B: a major human centromere protein located beneath the kinetochore , 1990, The Journal of cell biology.

[51]  H. Willard,et al.  Centromeres of mammalian chromosomes. , 1990, Trends in genetics : TIG.

[52]  H. Willard,et al.  Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. Willard,et al.  Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: evidence for short-range homogenization of tandemly repeated DNA sequences. , 1989, Genomics.

[54]  H. Masumoto,et al.  A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite , 1989, The Journal of cell biology.

[55]  T. Pollard,et al.  Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen , 1987, The Journal of cell biology.

[56]  Huntington F. Willard,et al.  Hierarchical order in chromosome-specific human alpha satellite DNA , 1987 .

[57]  H. Willard,et al.  Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. , 1985, Nucleic acids research.

[58]  M. Rosenberg,et al.  Highly reiterated sequences of SIMIANSIMIANSIMIANSIMIANSIMIAN. , 1978, Science.

[59]  G. P. Smith,et al.  Evolution of repeated DNA sequences by unequal crossover. , 1976, Science.