Reconstruction of bowing point friction force in a bowed string

A method is presented for reconstructing the friction force and the velocity at the bowing point of a string excited by a rosined bow sliding transverse to the string. Two versions of the method of reconstruction are presented, each approximate in different ways, but both capable of sufficient accuracy to allow useful application to problems of understanding frictional interactions in this dynamical system. The method is illustrated with simulated data to verify its accuracy, and results are shown for two contrasting cases of observed stick-slip string motion. As has been found in other investigations, the friction force during sliding is not determined by the instantaneous sliding speed. The results seem to be compatible with a thermally based model of rosin friction.