Chapter 1 - Spectrum Parameter Estimation in Time Series Analysis†

Publisher Summary In most fields of science and engineering, time series occur often, that is, series of observations that depend on a discrete or continuous time parameter and fluctuate in a disorderly fashion in time. Series of this kind cannot be reasonably described deterministically and should be studied through statistical methods only. Parametric spectral estimates based on mixed autoregressive-moving average models are not as popular as autoregressive estimates, but they also have been used in a dozen works. Estimation through some parametric model fitting might be studied in this case, along with more usual nonparametric spectral estimation. After the parameters of the model have been evaluated, it is advisable to employ some method of diagnostic checking to examine the agreement between the model and the available data, that is, to apply some goodness-of-fit tests.

[1]  H. Akaike Canonical Correlation Analysis of Time Series and the Use of an Information Criterion , 1976 .

[2]  C. Radhakrishna Rao,et al.  Efficient Estimates and Optimum Inference Procedures in Large Samples , 1962 .

[3]  B. Bhat,et al.  On the Method of Maximum-Likelihood for Dependent Observations , 1974 .

[4]  L. L. Cam,et al.  On the Asymptotic Theory of Estimation and Testing Hypotheses , 1956 .

[5]  R. P. Mentz Estimation in the First Order Moving Average Model Based on Sample Autocorrelations , 1977 .

[6]  T. Fine,et al.  Consistent estimation of system order , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[7]  J. Wise,et al.  THE AUTOCORRELATION FUNCTION AND THE SPECTRAL DENSITY FUNCTION , 1955 .

[8]  A. M. Walker Large-sample estimation of parameters for autoregressive processes with moving-average residuals , 1962 .

[9]  C. Striebel Densities for Stochastic Processes , 1959 .

[10]  D. Brillinger Fourier analysis of stationary processes , 1974 .

[11]  Method of maximum likelihood for stationary time series models , 1973 .

[12]  Modified maximum likelihood estimation of Gaussian moving averages using a pseudoquadratic convergence criterion , 1978 .

[13]  M. Kendall,et al.  A Study in the Analysis of Stationary Time-Series. , 1955 .

[14]  E. J. Hannan,et al.  The Asymptotic Distribution of Serial Covariances , 1976 .

[15]  M. M. Siddiqui On the Inversion of the Sample Covariance Matrix in a Stationary Autoregressive Process , 1958 .

[16]  M. Pagano Estimation of Models of Autoregressive Signal Plus White Noise , 1974 .

[17]  Warren Dent,et al.  A Monte Carlo study of autoregressive integrated moving average processes , 1978 .

[18]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[19]  Paul Newbold,et al.  Some power studies of a portmanteau test of time series model specification , 1979 .

[20]  Emanuel Parzen,et al.  TIME SERIES ANALYSIS FOR MODELS OF SIGNAL PLUS WHITE NOISE. , 1966 .

[21]  E. Hannan The estimation of mixed moving average autoregressive systems , 1969 .

[22]  S. Wu,et al.  Charts for the Interpretation and Estimation of the Second Order Autoregressive Model , 1970 .

[23]  Hirotugu Akaike,et al.  TIME SERIES ANALYSIS AND CONTROL THROUGH PARAMETRIC MODELS , 1978 .

[24]  Raúl Pedro Mentz,et al.  On the Inverse of Some Covariance Matrices of Toeplitz Type , 1976 .

[25]  A. M. Walker Asymptotic properties of least-squares estimates of parameters of the spectrum of a stationary non-deterministic time-series , 1964, Journal of the Australian Mathematical Society.

[26]  James G. MacKinnon,et al.  Full Maximum Likelihood Estimation of Second-Order Autoregressive Error Models , 1978 .

[27]  Paul Shaman,et al.  An Approximate Inverse for the Covariance Matrix of Moving Average and Autoregressive Processes , 1975 .

[28]  C. Ansley An algorithm for the exact likelihood of a mixed autoregressive-moving average process , 1979 .

[29]  G. Kedem,et al.  Computation of the exact likelihood function of multivariate moving average models , 1978 .

[30]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  Emanuel Parzen,et al.  Efficient Estimation of Stationary Time Series Mixed Schemes. , 1971 .

[32]  R. K. Adenstedt,et al.  On Large-Sample Estimation for the Mean of a Stationary Random Sequence , 1974 .

[33]  Morris J. Levin,et al.  Power spectrum parameter estimation , 1965, IEEE Trans. Inf. Theory.

[34]  A. Wald,et al.  On the Statistical Treatment of Linear Stochastic Difference Equations , 1943 .

[35]  E. Parzen Multiple Time Series: Determining the Order of Approximating Autoregressive Schemes. , 1975 .

[36]  C. J. Harris,et al.  An order-testing criterion for mixed autoregressive moving average processes , 1974 .

[37]  W. L. Root,et al.  On the Fourier Series Expansion of Random Functions , 1955 .

[38]  R. Galbraith,et al.  ON THE INVERSES OF SOME PATTERNED MATRICES ARISING IN THE THEORY OF STATIONARY TIME SERIES , 1974 .

[39]  J. Rice On the estimation of the parameters of a power spectrum , 1979 .

[40]  Nonexistence of estimates which minimizex'V−1x in an exponential type of stationary time series , 1979 .

[41]  H. Akaike Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .

[42]  H. T. Davis,et al.  Estimation of the Innovation Variance of a Stationary Time Series , 1968 .

[43]  P. Shaman On the inverse of the covariance matrix for an autoregressive-moving average process , 1973 .

[44]  Yuzo Hosoya High-Order Efficiency in the Estimation of Linear Processes , 1979 .

[45]  C. Heyde On an optimal asymptotic property of the maximum likelihood estimator of a parameter from a stochastic process , 1978 .

[46]  A. M. Walker Large-sample estimation of parameters for movingaverage models , 1961 .

[47]  Muketar M. Ali Analysis of autoregressive-moving average models: Estimation and prediction , 1977 .

[48]  E. Parzen Approach to empirical time series analysis , 1964 .

[49]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[50]  P. Shaman Approximations for Stationary Covariance Matrices and Their Inverses with Application to ARMA Models , 1976 .

[51]  T. Ulrich,et al.  Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .

[52]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[53]  Pham-Dinh-Tuan Estimation of parameters of a continuous time Gaussian stationary process with rational spectral density , 1977 .

[54]  R. Olshen Asymptotic properties of the periodogram of a discrete stationary process , 1967, Journal of Applied Probability.

[55]  K. Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1966 .

[56]  Ildar Ibragimov On Estimation of the Spectral Function of a Stationary Gaussian Process , 1963 .

[57]  Albert Arcese,et al.  Variances of spectral parameters with a Gaussian shape (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[58]  Bradley W. Dickinson Two recursive estimates of autoregressive models based on maximum likelihood , 1978 .

[59]  T. W. Anderson Maximum Likelihood Estimation of Parameters of Autoregressive Processes with Moving Average Residuals and Other Covariance Matrices with Linear Structure , 1975 .

[60]  G. Box,et al.  The likelihood function of stationary autoregressive-moving average models , 1979 .

[61]  J. Hájek On linear statistical problems in stochastic processes , 1962 .

[62]  W. Dunsmuir A Central Limit Theorem for Parameter Estimation in Stationary Vector Time Series and its Application to Models for a Signal Observed with Noise , 1979 .

[63]  T. W. Anderson Asymptotically Efficient Estimation of Covariance Matrices with Linear Structure , 1973 .

[64]  On the covariance determinants of moving-average and autoregressive models , 1960 .

[65]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[66]  P. Bloomfield An exponential model for the spectrum of a scalar time series , 1973 .

[67]  J. Gooijer On the inverse of the autocovariance matrix for a general mixed autoregressive moving average process , 1978 .

[68]  R. A. Vitale An asymptotically efficient estimate in time series analysis , 1973 .

[69]  H. Akaike Power spectrum estimation through autoregressive model fitting , 1969 .

[70]  O. D. Anderson,et al.  On the inverse of the autocovariance matrix for a general moving average process , 1976 .

[71]  A. M. Walker Some consequences of superimposed error in time series analysis , 1960 .

[72]  J. E. Reeves The distribution of the maximum likelihood estimator of the parameter in the first-order autoregressive series , 1972 .

[73]  Leslie Godfrey,et al.  Testing the adequacy of a time series model , 1979 .

[74]  George B. Kleindorfer,et al.  CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR SYSTEM. , 1969 .

[75]  R. E. DeVor,et al.  Charts for the Interpretation and Estimation of the Second Order Moving Average and Mixed First Order Autoregressive-Moving Average Models , 1974 .

[76]  P. Newbold The exact likelihood function for a mixed autoregressive-moving average process , 1974 .

[77]  P. Whittle,et al.  Estimation and information in stationary time series , 1953 .

[78]  Robert Kohn,et al.  Note concerning the Akaike and Hannan estimation procedures for an autoregressive-moving average process , 1977 .

[79]  M. Arató,et al.  Some new results in the statistical investigation of elementary Gaussian processes , 1973 .

[80]  T. W. Anderson Estimation for Autoregressive Moving Average Models in the Time and Frequency Domains , 1977 .

[81]  E. Godolphin A direct representation for the maximum likelihood estimator of a Gaussian moving average process , 1977 .

[82]  A. D. Hall,et al.  The exact likelihood function of multivariate autoregressive-moving average models , 1979 .

[83]  K. Steiglitz,et al.  Power-spectrum identification in terms of rational models , 1967 .

[84]  James G. MacKinnon,et al.  A MAXIMUM LIKELIHOOD PROCEDURE FOR REGRESSION WITH AUTOCORRELATED ERRORS , 1978 .

[85]  T. Phamdinh Estimation of Parameters in the ARMA Model When the Characteristic Polynomial of the MA Operator Has a Unit Zero , 1978 .

[86]  Howell Tong A note on a local equivalence of two recent approaches to autoregressive order determination , 1979 .

[87]  G. C. Tiao,et al.  Analysis of correlated random effects: linear model with two random components , 1971 .

[88]  P. Shaman ON THE INVERSE OF THE COVARIANCE MATRIX OF A FIRST-ORDER MOVING AVERAGE. , 1969 .

[89]  Daniel Graupe,et al.  Identification of predictor and filter parameters by ARMA methods , 1973 .

[90]  E. J. Hannan,et al.  Vector linear time series models , 1976, Advances in Applied Probability.

[91]  ON HANNAN'S ESTIMATION OF ARMA MODELS , 1972 .

[92]  G. Baxter,et al.  A strong limit theorem for Gaussian processes , 1956 .