On dynamics of triangular maps of the square

The paper is devoted to the triangular maps of the square into itself. The results presented were recently obtained by the author and are briefly stated (in Russian) in a difficult paper as well as those (jointly published with A. N. Sharkovsky) published in ECIT-89 (abstract). All these results are systematized and extended by the new ones. The more detailed proofs of all statements are given. It is shown, for example, that triangular maps exist such that their minimal attraction centres do not coincide with the centres, as well as such ones exist that the Milnor attractor is not contained in the closure of the set of periodic points.