A simple stabilized finite element method for solving two phase compressible–incompressible interface flows
暂无分享,去创建一个
[1] C. W. Hirt,et al. Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .
[2] Sandra Tancogne. Calcul numérique et stabilité d'écoulements diphasiques tridimensionnels en microfluidique , 2007 .
[3] M. Billaud. Eléments finis stabilisés pour des écoulements diphasiques compressible-incompressible , 2009 .
[4] Thomas J. R. Hughes,et al. A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .
[5] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[6] Bernhard Müller. Low mach number asymptotics of the navier-stokes equations and numerical implications , 1999 .
[7] R. Fedkiw,et al. A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .
[8] A. Smolianski. Finite‐element/level‐set/operator‐splitting (FELSOS) approach for computing two‐fluid unsteady flows with free moving interfaces , 2005 .
[9] Takashi Yabe,et al. Unified Numerical Procedure for Compressible and Incompressible Fluid , 1991 .
[10] Jean-François Remacle,et al. A quadrature-free discontinuous Galerkin method for the level set equation , 2006, J. Comput. Phys..
[11] S. Osher,et al. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .
[12] Nicola Parolini,et al. Mass preserving finite element implementations of the level set method , 2006 .
[13] Jean-François Remacle,et al. A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows , 2006, J. Comput. Phys..
[14] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[15] Guillermo Hauke,et al. Simple stabilizing matrices for the computation of compressible flows in primitive variables , 2001 .
[16] T. Alazard,et al. Low Mach Number Limit of the Full Navier-Stokes Equations , 2005, math/0501386.
[17] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[18] L. Pesch,et al. Construction of stabilization operators for Galerkin least-squares discretizations of compressible and incompressible flows , 2007 .
[19] L. Franca,et al. Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .
[20] Damien Guégan. Modélisation numérique d'écoulements bifluides 3 D instationnaires avec adaptation de maillage , 2007 .
[21] Charbel Farhat,et al. A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions , 2008, J. Comput. Phys..
[22] H. Guillard,et al. On the behaviour of upwind schemes in the low Mach number limit , 1999 .
[23] Feng Xiao,et al. Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow , 2004 .
[24] Masato Ida. An improved unified solver for compressible and incompressible fluids involving free surfaces. Part I. Convection , 2000 .
[25] Martin E. Weber,et al. Bubbles in viscous liquids: shapes, wakes and velocities , 1981, Journal of Fluid Mechanics.
[26] Masato Ida. An improved unified solver for compressible and incompressible fluids involving free surfaces. II. Multi-time-step integration and applications , 2002 .
[27] Takashi Yabe,et al. A universal cubic interpolation solver for compressible and incompressible fluids , 1991 .
[28] Analysis of stabilization operators for Galerkin least-squares discretizations of the incompressible Navier-Stokes equations , 2006 .
[29] Stanley Osher,et al. A second order primitive preconditioner for solving all speed multi-phase flows , 2005 .
[30] Feng Xiao,et al. Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows , 2006, J. Comput. Phys..
[31] Thomas J. R. Hughes,et al. A comparative study of different sets of variables for solving compressible and incompressible flows , 1998 .
[32] Ronald Fedkiw,et al. A method for avoiding the acoustic time step restriction in compressible flow , 2009, J. Comput. Phys..
[33] M. Baer,et al. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .
[34] R. Abgrall,et al. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .
[35] T. Hughes,et al. A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .
[36] Jaap J. W. van der Vegt,et al. A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids , 2008, J. Comput. Phys..
[37] Guillermo Hauke,et al. a Unified Approach to Compressible and Incompressible Flows and a New Entropy-Consistent Formulation of the K - Model. , 1994 .
[38] S. Schochet,et al. The Incompressible Limit of the Non-Isentropic Euler Equations , 2001 .
[39] Keh-Ming Shyue,et al. A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state , 2001 .