Diasterio‐ und enantioselektive Reduktion von β‐Ketoestern mit Cyclopentanon‐, Cyclohexanon‐, Piperidon‐ und Tetralon‐Struktur durch nicht fermentierende Bäcker‐Hefe

Diastereo- and Enantioselective Reduction of beta;-Keto Esters Derived from Cyclopentanone, Cyclohexanone, Piperidone and Tetralone by ‘Non-fermenting’ Baker's Yeast Under ‘non-fermenting’ conditions, i.e. in tap water, in the absence of nutrients baker's yeast (25–380 g/g of substrate, aerobic) reduces β-keto esters such as those mentioned in the title with better selectivity than under the normally employed ‘fermenting’ conditions (sugar and nutrients, CO2 development). With the β- keto esters containing the tetralone substructure, large amount of yeast are required (250–380 g/g); the substrate disappears in the biomass, and the desired reduction product can be extracted after reaction times of up to a week at 30°. The configuration of most products(16–24) is established. Generally, the (R)-β-keto ester is reduced faster than the (S)-enantiomer (the two esters are in equilibrium under the reactio conditions), and the hydride transfer takes place preferentially from the diastereotopic Re-face. The β-hydroxy esters thus available are useful starting materials for syntheses of enantiomerically pure compounds (EPC).

[1]  T. Itoh,et al.  Asymmetric Reduction with Baker's Yeast , 1986 .

[2]  R. Azerad,et al.  Diastereoselective and enantioselective microbial reduction of cyclic alpha-alkyl beta-ketoesters , 1986 .

[3]  T. Kitahara,et al.  Preparation of chiral cyclohexanol derivative with high optical purity by yeast reduction , 1985 .

[4]  C. Sih,et al.  Stereochemical control of yeast reductions. 5. Characterization of the oxidoreductases involved in the reduction of .beta.-keto esters , 1985 .

[5]  Sunggak Kim,et al.  A simple and mild esterification method for carboxylic acids using mixed carboxylic-carbonic anhydrides , 1985 .

[6]  D. Seebach,et al.  Preparation by yeast reduction and determination of the sense of chirality of enantiomerically pure ethyl (−)-4,4,4-trichloro-3-hydroxy- and (+)-4,4,4-trifluoro-3-hydroxybutanoate , 1984 .

[7]  Charles J. Sih,et al.  Mikrobielle asymmetrische Katalyse — enantioselektive Reduktion von Ketonen , 1984 .

[8]  D. Seebach,et al.  Preparation of Ethyl (R)‐(−)‐3‐Hydroxy‐2‐methylpropanoate by Yeast Reduction of Ethyl α‐Formylpropanoate , 1983 .

[9]  C. Sih,et al.  Stereochemical control of yeast reductions. 1. Asymmetric synthesis of L-carnitine , 1983 .

[10]  B. Wipf,et al.  Production of (+)‐(S)‐Ethyl 3‐Hydroxybutyrate and (‐)‐(R)‐Ethyl 3‐Hydroxybutyrate by Microbial Reduction of Ethyl Acetoacetate , 1983 .

[11]  D. Seebach,et al.  Doppelt und dreifach funktionalisierte, enantiomerenreine C4‐Synthesebausteine aus β‐Hydroxybuttersäure, Äpfelsäure und Weinsäure , 1981 .

[12]  György Fráter Über die Stereoselektivität der α‐Alkylierung von (1R, 2S) (+)‐cis‐2‐hydroxy‐cyclohexancarbonsäureäthylester , 1980 .

[13]  J. Domagala A mild, rapid, and convenient esterification of α-keto acids , 1980 .

[14]  W. C. Still,et al.  Rapid chromatographic technique for preparative separations with moderate resolution , 1978 .

[15]  D. Ridley,et al.  Asymmetric reductinon of carbonyl compounds by yeast. II. Preparation of optically active α- and β-hydroxy carboxylic acid derivatives , 1976 .

[16]  H. Mosher,et al.  Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and .alpha.-methoxy-.alpha.-trifluoromethylphenylacetate (MTPA) esters , 1973 .

[17]  E. Modest,et al.  Quinazolines. XI. Synthesis of 2,4-diamino-5, 10-diliydrobenzo[g] quinazolines†‡ , 1972 .

[18]  S. Pelletier,et al.  The Carboxylation and Formylation of Certain 2-Tetralones1,2 , 1966 .

[19]  T. Fujita,et al.  The Absolute Configuration of Plant Growth Substances—Partially Hydrogenated 1-Naphthoic Acids1 , 1959 .

[20]  S. Morosawa Studies on Seven-Membered Heterocyclic Compounds Containing Nitrogen. II. An Improved Synthesis of 1-Azacycloheptan-4-one and Its Related Compounds , 1958 .

[21]  G. I. Poos,et al.  Approaches to Total Synthesis of Adrenal Steroids. III. 5-Carbomethoxy-5-methylcyclohexene-1,4-dione as a Dienophile , 1952 .

[22]  E. Buchta,et al.  Versuche zur Synthese von Steroiden. V. Mitteil.: 6‐Methoxy‐2‐cyclopentyl‐ und 6‐Methoxy‐2‐Δ2‐cyclopentenyl‐tetralons‐(1) , 1949 .

[23]  W. Bachmann,et al.  The Synthesis of Analogs of the Sex Hormones. An Analog of Equilenin Lacking the Phenolic A Ring , 1941 .

[24]  J. R. Thayer,et al.  PIPERIDINE DERIVATIVES. V. THE PREPARATION AND REDUCTION OF CERTAIN PHENYL SUBSTITUTED 3-CARBETHOXY-4-PIPERIDONES. 1-CYCLOHEXYL- AND 1-PHENYLETHYL-3-CARBETHOXY-4-PIPERIDYL-PARA-AMINOBENZOATES1 , 1927 .