Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi

AbstractThe authors introduce a three-parameter characterization of the wind speed dependence of the drag coefficient and apply a Bayesian formalism to infer values for these parameters from airborne expendable bathythermograph (AXBT) temperature data obtained during Typhoon Fanapi. One parameter is a multiplicative factor that amplifies or attenuates the drag coefficient for all wind speeds, the second is the maximum wind speed at which drag coefficient saturation occurs, and the third is the drag coefficient's rate of change with increasing wind speed after saturation. Bayesian inference provides optimal estimates of the parameters as well as a non-Gaussian probability distribution characterizing the uncertainty of these estimates. The efficiency of this approach stems from the use of adaptive polynomial expansions to build an inexpensive surrogate for the high-resolution numerical model that couples simulated winds to the oceanic temperature data, dramatically reducing the computational burden of the M...

[1]  Katja Fennel,et al.  Estimating time-dependent parameters for a biological ocean model using an emulator approach , 2012 .

[2]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[3]  P. Black,et al.  Turbulent Fluxes in the Hurricane Boundary Layer. Part II: Latent Heat Flux , 2007 .

[4]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[5]  J. O'Brien,et al.  Variational data assimilation and parameter estimation in an equatorial Pacific ocean model , 1991 .

[6]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[7]  M. Donelan,et al.  Enthalpy Transfer across the Air–Water Interface in High Winds Including Spray , 2012 .

[8]  David W. Wang,et al.  Bottom-Up Determination of Air-Sea Momentum Exchange Under a Major Tropical Cyclone , 2007, Science.

[9]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[10]  D. Stammer,et al.  Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds , 2009 .

[11]  Knut Petras,et al.  On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..

[12]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[13]  Ibrahim Hoteit,et al.  A new approach for the determination of the drag coefficient from the upper ocean response to a tropical cyclone: a feasibility study , 2012, Journal of Oceanography.

[14]  Shuyi S. Chen,et al.  The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction , 2007 .

[15]  L. Shay,et al.  Relationship Between Oceanic Energy Fluxes AndSurface Winds During Tropical Cyclone Passage , 2006 .

[16]  D. Webb,et al.  Highly resolved observations and simulations of the ocean response to a hurricane , 2007 .

[17]  K. Emanuel Sensitivity of Tropical Cyclones to Surface Exchange Coefficients and a Revised Steady-State Model incorporating Eye Dynamics , 1995 .

[18]  H. Hurlburt,et al.  Air–Sea Flux Estimates And The 1997–1998 Enso Event , 2002 .

[19]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[20]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[21]  Eric P. Chassignet,et al.  North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity , 2003 .

[22]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[23]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation with MM5 , 2006 .

[24]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[25]  M. Donelan,et al.  Relative rates of sea‐air heat transfer and frictional drag in very high winds , 2010 .

[26]  Omar M. Knio,et al.  Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach , 2012, Computational Geosciences.

[27]  E. L. Andreas Fallacies of the Enthalpy Transfer Coefficient over the Ocean in High Winds , 2011 .

[28]  Svetlana N. Losa,et al.  Weak constraint parameter estimation for a simple ocean ecosystem model: what can we learn about the model and data? , 2004 .

[29]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[30]  Eric P. Chassignet,et al.  US GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM) , 2004 .

[31]  Timothy L. Olander,et al.  The Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite-Based Method that Has Endured for over 30 Years , 2006 .

[32]  The Effect of Roll Vortices on Turbulent Fluxes in the Hurricane Boundary Layer , 2006 .

[33]  Nicolas Reul,et al.  On the limiting aerodynamic roughness of the ocean in very strong winds , 2004 .

[34]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[35]  Daniel M. Tartakovsky,et al.  Uncertainty quantification for flow in highly heterogeneous porous media , 2004 .

[36]  G. Halliwell,et al.  Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM) , 2004 .

[37]  Kerry A. Emanuel,et al.  A Similarity Hypothesis for Air–Sea Exchange at Extreme Wind Speeds , 2003 .

[38]  M. Powell,et al.  Reduced drag coefficient for high wind speeds in tropical cyclones , 2003, Nature.

[39]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[40]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[41]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[42]  K. Emanuel,et al.  Effects of Sea Spray on Tropical Cyclone Intensity , 2001 .

[43]  Edward S Epstein Statistical inference and prediction in climatology : a bayesian approach , 1985 .

[44]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[45]  Michael Ghil,et al.  Data Assimilation for a Coupled Ocean–Atmosphere Model. Part II: Parameter Estimation , 2008 .

[46]  Omar M. Knio,et al.  Many Task Computing for modeling the fate of oil discharged from the Deep Water Horizon well blowout , 2010, 2010 3rd Workshop on Many-Task Computing on Grids and Supercomputers.

[47]  Remy Baraille,et al.  The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system , 2007 .

[48]  Knut Petras,et al.  Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.

[49]  G. Evans,et al.  The Use of Optimization Techniques to Model Marine Ecosystem Dynamics at the JGOFS Station at 47 degrees N 20 degrees W [and Discussion] , 1995 .

[50]  Wei Wang,et al.  Prediction of Landfalling Hurricanes with the Advanced Hurricane WRF Model , 2008 .

[51]  Utz Wever,et al.  Application of the Polynomial Chaos Expansion to the simulation of chemical reactors with uncertainties , 2012, Math. Comput. Simul..

[52]  Lawrence M. Murray,et al.  A Bayesian approach to state and parameter estimation in a Phytoplankton-Zooplankton model , 2010 .

[53]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[54]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[55]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[56]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[57]  Peter Bajorski,et al.  Wiley Series in Probability and Statistics , 2010 .

[58]  J. Dudhia,et al.  A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation , 2004 .

[59]  Timothy L. Olander,et al.  The Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite-Based Method that Has Endured for over 30 Years , 2006 .

[60]  K. Emanuel,et al.  Air-Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST , 2012 .

[61]  Justin Winokur,et al.  A priori testing of sparse adaptive polynomial chaos expansions using an ocean general circulation model database , 2013, Computational Geosciences.

[62]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[63]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[64]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[65]  H. Hurlburt,et al.  U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model , 2004 .

[66]  O. Knio,et al.  Propagating boundary uncertainties using polynomial expansions , 2012 .

[67]  Michael Ghil,et al.  Data Assimilation for a Coupled Ocean–Atmosphere Model. Part I: Sequential State Estimation , 2002 .

[68]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[69]  Knut Petras,et al.  Fast calculation of coefficients in the Smolyak algorithm , 2001, Numerical Algorithms.

[70]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[71]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[72]  Xun Huan,et al.  Simulation-based optimal Bayesian experimental design for nonlinear systems , 2011, J. Comput. Phys..

[73]  P. Black,et al.  Turbulent Fluxes in the Hurricane Boundary Layer. Part I: Momentum Flux , 2007 .

[74]  L. Mark Berliner,et al.  Bayesian hierarchical modeling of air-sea interaction , 2003 .

[75]  M. Dowd Estimating parameters for a stochastic dynamic marine ecological system , 2011 .

[76]  Wei Zhao,et al.  Directional Wind-Wave Coupling in Fully Coupled Atmosphere-Wave-Ocean Models: Results from CBLAST-Hurricane , 2013 .

[77]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[78]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation for treatment of mesoscale model error: A real‐data study , 2010 .

[79]  K. Walsh Constraints on drag and exchange coefficients at extreme wind speeds , 2010 .

[80]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[81]  H. Matthews,et al.  A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth System model , 2012 .

[82]  George Em Karniadakis,et al.  Sensitivity analysis and stochastic simulations of non‐equilibrium plasma flow , 2009 .

[83]  Jens Schröter,et al.  Testing a marine ecosystem model: Sensitivity analysis and parameter optimization , 2001 .