Phonon Polaritons in Monolayers of Hexagonal Boron Nitride

Phonon polaritons in van der Waals materials reveal significant confinement accompanied with long propagation length: important virtues for tasks pertaining to the control of light and energy flow at the nanoscale. While previous studies of phonon polaritons have relied on relatively thick samples, here reported is the first observation of surface phonon polaritons in single atomic layers and bilayers of hexagonal boron nitride (hBN). Using antenna‐based near‐field microscopy, propagating surface phonon polaritons in mono‐ and bilayer hBN microcrystals are imaged. Phonon polaritons in monolayer hBN are confined in a volume about one million times smaller than the free‐space photons. Both the polariton dispersion and their wavelength–thickness scaling law are altered compared to those of hBN bulk counterparts. These changes are attributed to phonon hardening in monolayer‐thick crystals. The data reported here have bearing on applications of polaritons in metasurfaces and ultrathin optical elements.

[1]  Kenji Watanabe,et al.  Phase‐Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2 , 2019, Advanced materials.

[2]  H. Bechtel,et al.  Phonon Polariton-assisted Infrared Nanoimaging of Local Strain in Hexagonal Boron Nitride. , 2019, Nano letters.

[3]  P. Narang,et al.  Phonon Polaritonics in Two-Dimensional Materials. , 2019, Nano letters (Print).

[4]  Shui-Tong Lee,et al.  In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal , 2018, Nature.

[5]  N. Xu,et al.  A mid-infrared biaxial hyperbolic van der Waals crystal , 2018, Science Advances.

[6]  Samuel T. White,et al.  Reconfigurable infrared hyperbolic metasurfaces using phase change materials , 2018, Nature Communications.

[7]  J. Hone,et al.  Fundamental limits to graphene plasmonics , 2018, Nature.

[8]  D. Englund,et al.  Probing the ultimate plasmon confinement limits with a van der Waals heterostructure , 2018, Science.

[9]  R. Hillenbrand,et al.  Infrared hyperbolic metasurface based on nanostructured van der Waals materials , 2018, Science.

[10]  I. Vurgaftman,et al.  Ultralow-loss polaritons in isotopically pure boron nitride. , 2018, Nature materials.

[11]  Kenji Watanabe,et al.  Manipulation and Steering of Hyperbolic Surface Polaritons in Hexagonal Boron Nitride , 2017, Advanced materials.

[12]  C. Figueroa,et al.  On the phonon dissipation contribution to nanoscale friction by direct contact , 2017, Scientific Reports.

[13]  I. Vurgaftman,et al.  Ultralow-loss polaritons in isotopically pure boron nitride. , 2017, Nature materials.

[14]  M. Goldflam,et al.  Relative efficiency of polariton emission in two-dimensional materials , 2017, 1704.05618.

[15]  R. Hillenbrand,et al.  Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials. , 2017, Nano letters.

[16]  M. Gibertini,et al.  Breakdown of Optical Phonons' Splitting in Two-Dimensional Materials. , 2016, Nano letters.

[17]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[18]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[19]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[20]  M. Dresselhaus,et al.  Synthesis of large-area multilayer hexagonal boron nitride for high material performance , 2015, Nature Communications.

[21]  George Hanson,et al.  Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics. , 2015, Physical review letters.

[22]  Frank H. L. Koppens,et al.  Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity , 2015, Nature Photonics.

[23]  H. Bechtel,et al.  Amplitude- and Phase-Resolved Nanospectral Imaging of Phonon Polaritons in Hexagonal Boron Nitride , 2015 .

[24]  S. Shikata,et al.  Friction Modification by Shifting of Phonon Energy Dissipation in Solid Atoms , 2015 .

[25]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[26]  F. Keilmann,et al.  Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material , 2015, Nature Communications.

[27]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[28]  Xiaoji G. Xu,et al.  One-dimensional surface phonon polaritons in boron nitride nanotubes , 2014, Nature Communications.

[29]  M. Raschke,et al.  Phase-resolved surface plasmon interferometry of graphene. , 2014, Physical review letters.

[30]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[31]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[32]  J. Idrobo,et al.  Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges , 2014, Science.

[33]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[34]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[35]  Jing Kong,et al.  Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. , 2012, Nano letters.

[36]  K. Michel,et al.  Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride , 2011 .

[37]  K. Novoselov,et al.  Hunting for monolayer boron nitride: optical and Raman signatures. , 2010, Small.

[38]  Gang Chen,et al.  Surface phonon polaritons mediated energy transfer between nanoscale gaps. , 2009, Nano letters.

[39]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[40]  Rainer Hillenbrand,et al.  Pseudoheterodyne detection for background-free near-field spectroscopy , 2006 .

[41]  S. Reich,et al.  Raman spectroscopy of single-wall boron nitride nanotubes. , 2006, Nano letters.

[42]  T Dekorsy,et al.  Infrared-phonon-polariton resonance of the nonlinear susceptibility in GaAs. , 2003, Physical review letters.

[43]  T. Feurer,et al.  Spatiotemporal Coherent Control of Lattice Vibrational Waves , 2003, Science.

[44]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[45]  Fukui,et al.  Experimental observation of attenuated-total-reflection spectra of GaAs/AlAs superlattice. , 1990, Physical review. B, Condensed matter.

[46]  T. Feurer,et al.  Terahertz polaritonics , 2002, Twenty Seventh International Conference on Infrared and Millimeter Waves.