Precision spectroscopy with 40 Ca + ions in a Paul trap

This thesis reports on experiments with trapped 40Ca+ ions related to the field of precision spectroscopy and quantum information processing. For the absolute frequency measurement of the 4s S1/2 − 3d D5/2 clock transition of a single, laser-cooled 40Ca+ ion, an optical frequency comb was referenced to the transportable Cs atomic fountain clock of LNE-SYRTE and the frequency of an ultra-stable laser exciting this transition was measured with a statistical uncertainty of 0.5 Hz. The correction for systematic shifts of 2.4(0.9) Hz including the uncertainty in the realization of the SI second yields an absolute transition frequency of νCa+ = 411 042 129 776 393.2(1.0) Hz. This is the first report on a ion transition frequency measurement employing Ramsey’s method of separated fields at the 10−15 level. Furthermore, an analysis of the spectroscopic data obtained the Landé g-factor of the 3d D5/2 level as g5/2=1.2003340(3). The main research field of our group is quantum information processing, therefore it is obvious to use the tools and techniques related to this topic like generating multi-particle entanglement or processing quantum information in decoherence-free sub-spaces and apply them to high-resolution spectroscopy. As a first realization, the quadrupole moment θ(3d, 5/2) of the 40Ca+ 3d D5/2 state was measured with especially designed states that are sensitive to electric field gradients but insensitive to the linear Zeeman effect and related noise. Measurements with Ramsey-type experiments could be performed at the subHertz level despite the presence of strong technical noise, yielding θ(3d, 5/2) =1.82(1) ea0. In addition, the measurement technique was also used in preliminary experiments to determine the linewidth of the narrowband interrogation laser. While entanglement leads to enhanced signal-to-noise ratios, it is not an essential ingredient for this kind of method. The measurement result obtained with classically correlated but un-entangled states confirms the measured value previously obtained with maximally entangled states. This might be interesting for experiments suffering from short singleatom coherences where experiments with correlated atoms could substantially enhance the coherence time and thus allow for precision spectroscopy with high resolution.

[1]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[2]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[3]  I. I. Sobelʹman,et al.  Atomic spectra and radiative transitions , 1979 .

[4]  F. Krausz,et al.  Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. , 1994, Optics letters.

[5]  I. Rabi,et al.  A New Method of Measuring Nuclear Magnetic Moment , 1938 .

[6]  P. Russell Photonic Crystal Fibers , 2003, Science.

[7]  Liaw Ab initio calculation of the lifetimes of 4p and 3d levels of Ca+ , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  J. Vanier,et al.  The quantum physics of atomic frequency standards , 1989 .

[9]  D. Leibfried,et al.  Ion optical clocks and quantum information processing , 2003, IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003.

[10]  Observatoire de Paris-Meudon Frequency measurement and control , 1994 .

[11]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[12]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[13]  M. Hohenstatt,et al.  Localized visible Ba + mono-ion oscillator , 1980 .

[14]  B. Farrell,et al.  Test of the principle of equivalence by a null gravitational red-shift experiment , 1983 .

[15]  Jun Ye,et al.  Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. , 2005, Optics letters.

[16]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[17]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[18]  Alan A. Madej,et al.  Single-Ion Optical Frequency Standards and Measurement of their Absolute Optical Frequency , 2001 .

[19]  F Levi,et al.  Single-atom optical clock with high accuracy. , 2006, Physical review letters.

[20]  W M Itano,et al.  Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. , 2003, Physical review letters.

[21]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[22]  F. Schmidt-Kaler,et al.  Bell states of atoms with ultralong lifetimes and their tomographic state analysis. , 2004, Physical review letters.

[23]  P. Petitjean,et al.  Variation of the fine-structure constant: very high resolution spectrum of QSO HE 0515-4414 , 2006, astro-ph/0601194.

[24]  Richard Phillips Feynman,et al.  Geometrical Representation of the Schrödinger Equation for Solving Maser Problems , 1957 .

[25]  L. Poletto,et al.  Isolated Single-Cycle Attosecond Pulses , 2006, Science.

[26]  Wayne M. Itano,et al.  Shift of 2 S 12 hyperfine splittings due to blackbody radiation , 1982 .

[27]  J.L. Hall,et al.  Optical frequency measurement: 40 years of technology revolutions , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Karen J. Olsen,et al.  NIST Atomic Spectra Database (version 2.0) , 1999 .

[29]  C Langer,et al.  Spectroscopy Using Quantum Logic , 2005, Science.

[30]  H. Risken,et al.  Quantum Collapses and Revivals in a Quantized Trap , 1992 .

[31]  J. Squier,et al.  Mode locking of Ti:AI(2)O(3) lasers and self-focusing: a Gaussian approximation. , 1991, Optics letters.

[32]  Masayuki Nakagawa,et al.  The nuclear interaction at Oklo 2 billion years ago , 2000 .

[33]  Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen , 1927 .

[34]  Flavio C. Cruz,et al.  VISIBLE LASERS WITH SUBHERTZ LINEWIDTHS , 1999 .

[35]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[36]  U. Rapol,et al.  Erratum: Measurement of the hyperfine structure of the S 1/2 - D 5/2 transition in Ca+43 [Phys. Rev. A 75, 032506 (2007)] , 2007 .

[37]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[38]  M D Barrett,et al.  Enhanced quantum state detection efficiency through quantum information processing. , 2005, Physical review letters.

[39]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[41]  Sandberg,et al.  Shelved optical electron amplifier: Observation of quantum jumps. , 1986, Physical review letters.

[42]  André Clairon,et al.  Quantum projection noise in an atomic fountain: a high stability cesium frequency standard , 1999 .

[43]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[44]  J. Bell,et al.  Schrödinger: Are there quantum jumps? , 1987 .

[45]  P. Gill,et al.  Hertz-Level Measurement of the Optical Clock Frequency in a Single 88Sr+ Ion , 2004, Science.

[46]  H. Häffner,et al.  Robust entanglement , 2005 .

[47]  Judah Levine,et al.  Introduction to time and frequency metrology , 1999 .

[48]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[49]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[50]  C. Monroe,et al.  Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.

[51]  Jun Ye,et al.  Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti:sapphire lasers , 2003 .

[52]  Theodor W. Hänsch,et al.  Absolute Optical Frequency Measurement of the Cesium D 1 Line with a Mode-Locked Laser , 1999 .

[53]  H R Telle,et al.  Absolute frequency measurement of the 435.5-nm (171)Yb+-clock transition with a Kerr-lens mode-locked femtosecond laser. , 2001, Optics letters.

[54]  H. Stoehr,et al.  Diode laser with 1 Hz linewidth. , 2006, Optics letters.

[55]  Patrick Gill,et al.  Observation of a Sub-10-Hz Linewidth $^{88}\hbox{Sr}^{+ \ \ 2}\hbox{S}_{1/2}$–$^{2}\hbox{D}_{5/2}$ Clock Transition at 674 nm , 2007, IEEE Transactions on Instrumentation and Measurement.

[56]  Andreas Bauch,et al.  Experimental Verification of the Shift of the Cesium Hyperfine Transition Frequency due to Blackbody Radiation , 1997 .

[57]  R. Decher,et al.  Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .

[58]  F. Vedel,et al.  Evaluation of the ultimate performances of a Ca+ single-ion frequency standard , 2003, physics/0312120.

[59]  T. Hänsch,et al.  Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , 1980 .

[60]  R. Wynands,et al.  Atomic fountain clocks , 2005 .

[61]  Nagourney,et al.  Stark shift of a single barium ion and potential application to zero-point confinement in a rf trap. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[62]  Entanglement interferometry for precision measurement of atomic scattering properties. , 2003, Physical review letters.

[63]  A. Shlyakhter Direct test of the constancy of fundamental nuclear constants , 1976, Nature.

[64]  J. Abate Preparation of atomic sodium as a two-level atom , 1974 .

[65]  R. F. Wuerker,et al.  Electrodynamic Containment of Charged Particles , 1959 .

[66]  G. Marr,et al.  Atomic Spectra and Radiative Transitions , 1979 .

[67]  Charles W. Clark,et al.  Blackbody-radiation shift in a 88Sr+ ion optical frequency standard , 2009, 0904.2107.

[68]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[69]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[70]  L S Ma,et al.  Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. , 1994, Optics letters.

[71]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[72]  J. Britton,et al.  Quantum information processing with trapped ions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[73]  H. Freedhoff Master equation for electric quadrupole transitions , 1989 .

[74]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[75]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[76]  Mizuhiko Hosokawa,et al.  Prospect of optical frequency standard based on a {sup 43}Ca{sup +} ion , 2005 .

[77]  N. S. Barnett,et al.  Private communication , 1969 .

[78]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[79]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[80]  J Ye,et al.  Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15). , 2007, Optics letters.

[81]  C. F. Roos,et al.  Experimental quantum-information processing withC43a+ions , 2008, 0804.1261.

[82]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[83]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[84]  Blatt,et al.  Observation of quantum jumps. , 1986, Physical review letters.

[85]  G. Revalde,et al.  The $\mathsf{g_{\scriptscriptstyle J}}$-factor in the ground state of Ca $^\mathsf{+}$ , 2003 .

[86]  F. Schmidt-Kaler,et al.  Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor. , 2002, Physical review letters.

[87]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[88]  H. Dehmelt,et al.  Monoion oscillator as potential ultimate laser frequency standard , 1982, IEEE Transactions on Instrumentation and Measurement.

[89]  S. Diddams,et al.  Standards of Time and Frequency at the Outset of the 21st Century , 2004, Science.

[90]  Patrick Gill,et al.  Subkilohertz absolute-frequency measurement of the 467-nm electric octupole transition in {sup 171}Yb{sup +} , 2003 .

[91]  Yuri Ralchenko,et al.  NIST Atomic Spectra Database , 2000 .

[92]  W A Marrison THE CRYSTAL CLOCK. , 1930, Proceedings of the National Academy of Sciences of the United States of America.

[93]  P. Knight,et al.  The Jaynes-Cummings Model , 1993 .

[94]  W. Itano Quadrupole moments and hyperfine constants of metastable states of Ca{sup +}, Sr{sup +}, Ba{sup +}, Yb{sup +}, Hg{sup +}, and Au , 2005, physics/0512250.

[95]  Thomas Udem,et al.  Attosecond control of optical waveforms , 2005 .

[96]  E. Schrödinger,et al.  ARE THERE QUANTUM JUMPS? , 1952, The British Journal for the Philosophy of Science.

[97]  H. Dehmelt,et al.  Mono-Ion Oscillator as Potential Ultimate Laser Frequency Standard , 1981 .

[98]  F. Riehle,et al.  First phase-coherent frequency measurement of visible radiation. , 1996, Physical review letters.

[99]  V V Flambaum,et al.  Further evidence for cosmological evolution of the fine structure constant. , 2001, Physical review letters.

[100]  Ph Laurent,et al.  Search for variations of fundamental constants using atomic fountain clocks. , 2003, Physical review letters.

[101]  C. Eckart The Application of Group theory to the Quantum Dynamics of Monatomic Systems , 1930 .

[102]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[103]  U. Kleineberg,et al.  Atomic transient recorder , 2004, Nature.

[104]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[105]  David J. Wineland,et al.  Laser cooling of atoms , 1979 .

[106]  The Oklo bound on the time variation of the fine-structure constant revisited , 1996, hep-ph/9606486.

[107]  S. Nagano,et al.  Frequency Measurement of the Optical Clock Transition of 40Ca+ Ions with an Uncertainty of 10-14 Level , 2008 .

[108]  Church,et al.  Precision lifetimes for the Ca+ 4p 2P levels: Experiment challenges theory at the 1% level. , 1993, Physical review letters.

[109]  Ekkehard Peik,et al.  Laser frequency stabilization to a single ion , 2005, physics/0511168.

[110]  F. Kärtner,et al.  Stabilization of solitonlike pulses with a slow saturable absorber. , 1995, Optics letters.

[111]  Philipp Schindler,et al.  Deterministic entanglement swapping with an ion-trap quantum computer , 2008 .

[112]  Andreas Bauch,et al.  Caesium atomic clocks: function, performance and applications , 2003 .

[113]  G. Kirchmair Frequency stabilization of a Titanium-Sapphire laser for precision spectroscopy on Calcium ions , 2006 .

[114]  D. Wineland,et al.  Double-resonance and optical-pumping experiments on electromagnetically confined, laser-cooled ions. , 1980, Optics letters.

[115]  Fritz Riehle,et al.  Frequency standards , 2004 .

[116]  N. Ramsey,et al.  History of Atomic Clocks. , 1983, Journal of research of the National Bureau of Standards.

[117]  Wineland,et al.  Observation of quantum jumps in a single atom. , 1986, Physical review letters.

[118]  Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars. , 2004, Physical review letters.

[119]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[120]  S N Bagayev,et al.  Absolute frequency measurement of the In+ clock transition with a mode-locked laser. , 2000, Optics letters.

[121]  F. Schmidt-Kaler,et al.  New experimental and theoretical approach to the 3d D-level lifetimes of 40Ca+ , 2004 .

[122]  J. Mitroy,et al.  Long range interactions of the Mg+ and Ca+ ions , 2008 .

[123]  Salomon,et al.  Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock , 2000, Physical review letters.

[124]  D. Reimers,et al.  Probing the variability of the fine-structure constant with the VLT/UVES , 2003, astro-ph/0311280.

[125]  B Lipphardt,et al.  Limit on the present temporal variation of the fine structure constant. , 2004, Physical review letters.

[126]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[127]  P. Rosenbusch,et al.  Cold atom clocks and applications , 2005, physics/0502117.

[128]  U. Heinzmann,et al.  Attosecond metrology , 2007, Nature.

[129]  R. Holzwarth,et al.  Attosecond spectroscopy in condensed matter , 2007, Nature.

[130]  W. Ertmer,et al.  Optical Clocks in Space , 2006, gr-qc/0608081.

[131]  F. Krausz,et al.  Kerr lens mode locking. , 1992, Optics letters.

[132]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[133]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[134]  Wayne M. Itano,et al.  External-Field Shifts of the 199Hg+ Optical Frequency Standard , 2000, Journal of research of the National Institute of Standards and Technology.

[135]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[136]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[137]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[138]  Reichert,et al.  Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser , 2000, Physical review letters.

[139]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2007, 0801.0028.

[140]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[141]  S. Karshenboim,et al.  Fundamental physical constants: looking from different angles , 2005 .

[142]  D J Wineland,et al.  Observation of the 1S0-->3P0 clock transition in 27Al+. , 2007, Physical review letters.

[143]  R. Dicke The effect of collisions upon the Doppler width of spectral lines , 1953 .

[144]  T Schneider,et al.  Sub-Hertz optical frequency comparisons between two trapped 171Yb+ ions. , 2005, Physical review letters.

[145]  Jon H. Shirley,et al.  Accuracy evaluation of NIST-F1 , 2002 .

[146]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[147]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[148]  A. Luiten,et al.  Frequency measurement and control : advanced techniques and future trends , 2001 .

[149]  André Clairon,et al.  Ramsey resonance in a zacharias fountain , 1991 .

[150]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[151]  R. Blatt,et al.  Precision measurement of the branching fractions of the 4p 2P3/2 decay of Ca II , 2008, 0807.2905.

[152]  M. Teich,et al.  Fundamentals of Photonics , 1991 .