Synaptic structure and diffusion dynamics of synaptic receptors

[1]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[2]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[3]  Yu Tian Wang,et al.  Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD , 2002, Neuron.

[4]  M. Sheng,et al.  Postsynaptic Signaling and Plasticity Mechanisms , 2002, Science.

[5]  M. Ehlers,et al.  Dynamics and Regulation of Clathrin Coats at Specialized Endocytic Zones of Dendrites and Spines , 2002, Neuron.

[6]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Masahito Yamagata,et al.  Sidekicks Synaptic Adhesion Molecules that Promote Lamina-Specific Connectivity in the Retina , 2002, Cell.

[8]  E. Normand,et al.  Recruitment of the Kainate Receptor Subunit Glutamate Receptor 6 by Cadherin/Catenin Complexes , 2002, The Journal of Neuroscience.

[9]  M. Takeichi,et al.  Cadherin Regulates Dendritic Spine Morphogenesis , 2002, Neuron.

[10]  E. Schuman,et al.  Depolarization Drives β-Catenin into Neuronal Spines Promoting Changes in Synaptic Structure and Function , 2002, Neuron.

[11]  M. Sheng,et al.  Gephyrin Interacts with Dynein Light Chains 1 and 2, Components of Motor Protein Complexes , 2002, The Journal of Neuroscience.

[12]  Ken Jacobson,et al.  A Role for Lipid Shells in Targeting Proteins to Caveolae, Rafts, and Other Lipid Domains , 2002, Science.

[13]  D. Choquet,et al.  Regulation of AMPA receptor lateral movements , 2002, Nature.

[14]  A. Sergé,et al.  Receptor Activation and Homer Differentially Control the Lateral Mobility of Metabotropic Glutamate Receptor 5 in the Neuronal Membrane , 2002, The Journal of Neuroscience.

[15]  R. Malenka,et al.  Differential roles for NSF and GRIP/ABP in AMPA receptor cycling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  N. Ziv,et al.  Molecular mechanisms of CNS synaptogenesis , 2002, Trends in Neurosciences.

[17]  G. Westbrook,et al.  Mobile NMDA Receptors at Hippocampal Synapses , 2002, Neuron.

[18]  A. D. De Blas,et al.  GABAergic Innervation Organizes Synaptic and Extrasynaptic GABAA Receptor Clustering in Cultured Hippocampal Neurons , 2002, The Journal of Neuroscience.

[19]  A. Triller,et al.  Strychnine-Blocked Glycine Receptor Is Removed from Synapses by a Shift in Insertion/Degradation Equilibrium , 2002, Molecular and Cellular Neuroscience.

[20]  R. Huganir,et al.  Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  V. Piëch,et al.  Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons , 2001, Nature Neuroscience.

[22]  W. Wisden,et al.  GABAA receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1 , 2001, Nature Neuroscience.

[23]  J. Meier,et al.  Dynamics of Glycine Receptor Insertion in the Neuronal Plasma Membrane , 2001, The Journal of Neuroscience.

[24]  R. Olsen,et al.  The Subcellular Distribution of GABARAP and Its Ability to Interact with NSF Suggest a Role for This Protein in the Intracellular Transport of GABAA Receptors , 2001, Molecular and Cellular Neuroscience.

[25]  A. Craig,et al.  Molecular heterogeneity of central synapses: afferent and target regulation , 2001, Nature Neuroscience.

[26]  Mark von Zastrow,et al.  Role of ampa receptor endocytosis in synaptic plasticity , 2001, Nature Reviews Neuroscience.

[27]  S. Moss,et al.  Constructing inhibitory synapses , 2001, Nature Reviews Neuroscience.

[28]  A. Triller,et al.  Fast and reversible trapping of surface glycine receptors by gephyrin , 2001, Nature Neuroscience.

[29]  Wei-Yang Lu,et al.  Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons , 2001, Neuron.

[30]  R. Nicoll,et al.  Contribution of cytoskeleton to the internalization of AMPA receptors. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Dane M. Chetkovich,et al.  Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms , 2000, Nature.

[32]  D. Suter,et al.  The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN. , 2000, Cell motility and the cytoskeleton.

[33]  M. Sheng,et al.  Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization , 2000, Nature Neuroscience.

[34]  Richard L. Huganir,et al.  Postsynaptic organisation and regulation of excitatory synapses , 2000, Nature Reviews Neuroscience.

[35]  M. Ehlers,et al.  Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting , 2000, Neuron.

[36]  J. Meier,et al.  Functional Heterogeneity of Gephyrins , 2000, Molecular and Cellular Neuroscience.

[37]  J. Brusés Cadherin-mediated adhesion at the interneuronal synapse. , 2000, Current opinion in cell biology.

[38]  J. Kirsch,et al.  Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Jentsch,et al.  Ubiquitin and its kin: how close are the family ties? , 2000, Trends in cell biology.

[40]  H. Wässle,et al.  The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Huganir,et al.  PDZ domains in synapse assembly and signalling. , 2000, Trends in cell biology.

[42]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[43]  A. Craig,et al.  Postsynaptic Scaffolds of Excitatory and Inhibitory Synapses in Hippocampal Neurons: Maintenance of Core Components Independent of Actin Filaments and Microtubules , 2000, The Journal of Neuroscience.

[44]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[45]  Roberto Malinow,et al.  LTP mechanisms: from silence to four-lane traffic , 2000, Current Opinion in Neurobiology.

[46]  M. Kennedy,et al.  Identification of Proteins in the Postsynaptic Density Fraction by Mass Spectrometry , 2000, The Journal of Neuroscience.

[47]  Z. Nusser AMPA amd NMDA receptors: similarities and differences in their synaptic distribution , 2000, Current Opinion in Neurobiology.

[48]  W. Sieghart,et al.  Colocalization of multiple GABAA receptor subtypes with gephyrin at postsynaptic sites , 2000, The Journal of comparative neurology.

[49]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[50]  G. Turrigiano AMPA Receptors Unbound Membrane Cycling and Synaptic Plasticity , 2000, Neuron.

[51]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[52]  Yu Tian Wang,et al.  Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization , 2000, Neuron.

[53]  D. Linden,et al.  Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis , 2000, Neuron.

[54]  E. M. Barnes Intracellular trafficking of GABAA receptors , 2000 .

[55]  David R. Colman,et al.  Molecular Modification of N-Cadherin in Response to Synaptic Activity , 2000, Neuron.

[56]  R. Nicoll,et al.  Dynamin-dependent endocytosis of ionotropic glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Brandstätter,et al.  Loss of Postsynaptic GABAA Receptor Clustering in Gephyrin-Deficient Mice , 1999, The Journal of Neuroscience.

[58]  Andreas Lüthi,et al.  Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction , 1999, Neuron.

[59]  H. Okado,et al.  Continual remodeling of postsynaptic density and its regulation by synaptic activity , 1999, Nature Neuroscience.

[60]  W. Sieghart,et al.  Synaptic Control of Glycine and GABAA Receptors and Gephyrin Expression in Cultured Motoneurons , 1999, The Journal of Neuroscience.

[61]  P. Worley,et al.  Shank, a Novel Family of Postsynaptic Density Proteins that Binds to the NMDA Receptor/PSD-95/GKAP Complex and Cortactin , 1999, Neuron.

[62]  P. Worley,et al.  Coupling of mGluR/Homer and PSD-95 Complexes by the Shank Family of Postsynaptic Density Proteins , 1999, Neuron.

[63]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[64]  G. Collingridge,et al.  Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism , 1999, Neuron.

[65]  S. Snyder,et al.  Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. , 1999, Science.

[66]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[67]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[68]  T. Südhof,et al.  Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  N. Brandon,et al.  GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton , 1999, Nature.

[70]  A. Triller,et al.  Dendritic and Postsynaptic Protein Synthetic Machinery , 1999, The Journal of Neuroscience.

[71]  R. Morris,et al.  Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein , 1998, Nature.

[72]  G. Feng,et al.  Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. , 1998, Science.

[73]  Bernhard Lüscher,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin , 1998, Nature Neuroscience.

[74]  P. Worley,et al.  Homer Regulates the Association of Group 1 Metabotropic Glutamate Receptors with Multivalent Complexes of Homer-Related, Synaptic Proteins , 1998, Neuron.

[75]  T. Südhof,et al.  A Tripartite Protein Complex with the Potential to Couple Synaptic Vesicle Exocytosis to Cell Adhesion in Brain , 1998, Cell.

[76]  Hidekazu Tanaka,et al.  N-Cadherin Redistribution during Synaptogenesis in Hippocampal Neurons , 1998, The Journal of Neuroscience.

[77]  J. Bolam,et al.  Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat , 1998, The Journal of comparative neurology.

[78]  G. Collingridge,et al.  NSF Binding to GluR2 Regulates Synaptic Transmission , 1998, Neuron.

[79]  Chou P Hung,et al.  A Role for the Cadherin Family of Cell Adhesion Molecules in Hippocampal Long-Term Potentiation , 1998, Neuron.

[80]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[81]  J. Kirsch,et al.  Glycine-receptor activation is required for receptor clustering in spinal neurons , 1998, Nature.

[82]  Peter Somogyi,et al.  Segregation of Different GABAA Receptors to Synaptic and Extrasynaptic Membranes of Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[83]  M. Sheng,et al.  Heterogeneity in the Molecular Composition of Excitatory Postsynaptic Sites during Development of Hippocampal Neurons in Culture , 1998, The Journal of Neuroscience.

[84]  T. Sasaki,et al.  Interactions of drebrin and gephyrin with profilin. , 1998, Biochemical and biophysical research communications.

[85]  A. Triller,et al.  Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. , 1998, Journal of cell science.

[86]  P. Somogyi,et al.  Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1α, mGluR2 and mGluR5, relative to neurotransmitter release sites , 1997, Journal of Chemical Neuroanatomy.

[87]  R. Huganir,et al.  Redistribution and Stabilization of Cell Surface Glutamate Receptors during Synapse Formation , 1997, The Journal of Neuroscience.

[88]  T. Südhof,et al.  Binding of neuroligins to PSD-95. , 1997, Science.

[89]  R. Weinberg,et al.  Characterization of Guanylate Kinase-Associated Protein, a Postsynaptic Density Protein at Excitatory Synapses That Interacts Directly with Postsynaptic Density-95/Synapse-Associated Protein 90 , 1997, The Journal of Neuroscience.

[90]  Richard L. Huganir,et al.  GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors , 1997, Nature.

[91]  C. Barnes,et al.  Homer: a protein that selectively binds metabotropic glutamate receptors , 1997, Nature.

[92]  A. Triller,et al.  Dendritic and Postsynaptic Localizations of Glycine Receptor α Subunit mRNAs , 1997, The Journal of Neuroscience.

[93]  Ann Marie Craig,et al.  Competitive binding of α-actinin and calmodulin to the NMDA receptor , 1997, Nature.

[94]  M. Takeichi,et al.  The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones , 1996, The Journal of cell biology.

[95]  D. Colman,et al.  A Model for Central Synaptic Junctional Complex Formation Based on the Differential Adhesive Specificities of the Cadherins , 1996, Neuron.

[96]  A Kusumi,et al.  Cell surface organization by the membrane skeleton. , 1996, Current opinion in cell biology.

[97]  O. Ottersen,et al.  Organization of AMPA Receptor Subunits at a Glutamate Synapse: A Quantitative Immunogold Analysis of Hair Cell Synapses in the Rat Organ of Corti , 1996, The Journal of Neuroscience.

[98]  P. Seeburg,et al.  Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. , 1995, Science.

[99]  Dieter Langosch,et al.  Identification of a gephyrin binding motif on the glycine receptor β subunit , 1995, Neuron.

[100]  D. Maxwell,et al.  Colocalization of glycine and GABA in synapses on spinomedullary neurons , 1995, Brain Research.

[101]  J. Kirsch,et al.  The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  C. Nobes,et al.  Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia , 1995, Cell.

[103]  P. Somogyi,et al.  Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[104]  R. Duvoisin,et al.  The metabotropic glutamate receptors: Structure and functions , 1995, Neuropharmacology.

[105]  P. Somogyi,et al.  Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization , 1994, Neuroscience.

[106]  A. Triller,et al.  Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons , 1993, Nature.

[107]  P. Somogyi,et al.  The metabotropic glutamate receptor (mGluRlα) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction , 1993, Neuron.

[108]  Adel K. Afifi,et al.  The Fine Structure of the Nervous System , 1991, Neurology.

[109]  E. Elson,et al.  Formation of acetylcholine receptor clusters in chick myotubes: migration or new insertion? , 1989, The Journal of cell biology.

[110]  H. Korn,et al.  Distribution of glycine receptors at central synapses: an immunoelectron microscopy study , 1985, The Journal of cell biology.

[111]  Y. Kidokoro,et al.  Formation of acetylcholine receptor clusters at neuromuscular junction in Xenopus cultures. , 1985, Developmental biology.

[112]  W. Webb,et al.  Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[113]  A. Ward,et al.  Neuromuscular Diseases of Infancy and Childhood , 1970, Neurology.

[114]  Nicolas Destainville,et al.  Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. , 2003, Biophysical journal.

[115]  Akihiro Kusumi,et al.  Relationship of lipid rafts to transient confinement zones detected by single particle tracking. , 2002, Biophysical journal.

[116]  M. Sheng,et al.  PDZ domains and the organization of supramolecular complexes. , 2001, Annual review of neuroscience.

[117]  J. Kirsch,et al.  Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin , 2000, Nature Neuroscience.

[118]  E. M. Barnes Intracellular trafficking of GABA(A) receptors. , 2000, Life sciences.

[119]  R. Huganir,et al.  Clustering of AMPA Receptors by the Synaptic PDZ Domain–Containing Protein PICK1 , 1999, Neuron.

[120]  T. Südhof,et al.  Neurexins: three genes and 1001 products. , 1998, Trends in genetics : TIG.

[121]  J. Benson,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. , 1998, Nature neuroscience.

[122]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.

[123]  M. Sheng,et al.  Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. , 1997, Nature.

[124]  A. Triller,et al.  Dendritic and postsynaptic localizations of glycine receptor alpha subunit mRNAs. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  G. Meyer,et al.  Identification of a gephyrin binding motif on the glycine receptor beta subunit. , 1995, Neuron.