Über den Einsatz einer LASER-Entfernungsbildkamera an autonomen Fahrzeugen

This thesis describes development and structure of an autonomous mobile robot, equipped with a Range-ImageCamera. The Range-Image-Camera (RIC or german: EBK) is a new measuring-system wich uses the time of flight and intensity of short laserflashes to get high-definition greyscaleand rangeimages of its actual environment. A rangeimage is more or less the same like a greyscale-image, but instead of brightness it contains an object range in every pixel of the CCD-array. This paper will explain the necessary physics, resolutions, conditions of environment and algorithms for rangeimage processing. Then a concept is shown, how to use threedimensional rangeimages of the workspace to provide navigation and obstacle avoidance for an autonomous wheelchair. Therefore a vector-based mathematical environment and vehicle model is used. This model transforms areas of the same spatial size to planes parallel to the floor, defined by its lower and upper boundaries in z-direction. The routeplanning algorithms are based on a global, multilevel environmental map. If the wheelchair detects new obstacles while driving, they are added to the global map. This means, the robot can be used in known and unknown environments. The software of navigation has the ability to explore the world in the area, which is necessary to reach a given destination. In environments with many obstacles the multilevel-model allows to solve complex navigation-problems, like turnings of 180 degrees with the seat passing under a table or going through narrow doors. This is shown in some examples at the end of this thesis.

[1]  Friedrich M. Wahl,et al.  Ein Kamera-basiertes Navigationssystem für mobile Roboter in belebten Umgebungen , 1998, AMS.

[2]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[3]  Thomas Kämpke,et al.  Navigation nicht-kreisförmiger mobiler Roboter in hindernisdichten Umgebungen , 1998, AMS.

[4]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Aaron F. Bobick,et al.  The direct computation of height from shading , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Didier Keymeulen,et al.  The fluid dynamics applied to mobile robot motion: the stream field method , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[7]  Dariu Gavrila,et al.  Bildverstehen im innerstädtischen Verkehr , 1998, AMS.

[8]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[9]  Wolfram Burgard,et al.  Map learning and high-speed navigation in RHINO , 1998 .

[10]  Jochen S. Gutmann Vergleich von algorithmen zur selbstlokalisierung eines mobilen roboters , 1996 .

[11]  Ramakant Nevatia,et al.  Segment-based stereo matching , 1985, Comput. Vis. Graph. Image Process..

[12]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[13]  Günter Hommel,et al.  MARVIN - Ein autonom fliegender Erkundungsroboter , 1988, AMS.

[14]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[15]  Rüdiger Dillmann,et al.  Eine skalierbare, verteilte Architektur zur Navigation mobiler Systeme in dynamischen Umgebungen , 1998, AMS.

[16]  Kim L. Boyer,et al.  Color-Encoded Structured Light for Rapid Active Ranging , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Günter Pritschow,et al.  Umgebungsmodellierung und Positionsbestimmung mit Geradengittern für mobile Roboter , 1998, AMS.

[18]  Shmuel Peleg,et al.  Stereo by Incremental Matching of Contours , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Hobart R. Everett,et al.  Sensors for Mobile Robots: Theory and Application , 1995 .

[20]  John N. Carter,et al.  Improved Stripe Matching for Colour Encoded Structured Light , 1993, CAIP.

[21]  Minoru Maruyama,et al.  Range Sensing By Projecting Multiple Slits With Random Cuts , 1990, Other Conferences.

[22]  Stephen T. Barnard,et al.  Stochastic stereo matching over scale , 1989, International Journal of Computer Vision.

[23]  Berthold K. P. Horn Understanding Image Intensities , 1977, Artif. Intell..

[24]  Wolfgang Krüger,et al.  Robuste Fahrspurverfolgung und Bewegungskompensation in einem videobasierten Echtzeitsystem , 1998, AMS.

[25]  J. Guldner,et al.  Lokale Kollisionsvermeidung für mobile Roboter mittels künstlicher harmonischer Dipol-Potentiale , 1997 .

[26]  Günther Schmidt,et al.  Mobile Robot Navigation In A Dynamic World Using An Unsteady Diffusion Equation Strategy , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.