Gröbner bases and wavelet design

Abstract In this paper, we detail the use of symbolic methods in order to solve some advanced design problems arising in signal processing. Our interest lies especially in the construction of wavelet filters for which the usual spectral factorization approach (used for example to construct the well-known Daubechies filters) is not applicable. In these problems, we show how the design equations can be written as multivariate polynomial systems of equations and accordingly how Grobner algorithms offer an effective way to obtain solutions in some of these cases.

[1]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[2]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[3]  M. Vetterli,et al.  Time-varying filter banks and multiwavelets , 1994, Proceedings of IEEE 6th Digital Signal Processing Workshop.

[4]  G. Plonka Approximation order provided by refinable function vectors , 1997 .

[5]  David Francis Walnut,et al.  Wavelets: A Tutorial in Theory and Applications (Charles K. Chui, ed.) , 1993, SIAM Rev..

[6]  C. Burrus,et al.  Maximally flat low-pass FIR filters with reduced delay , 1998 .

[7]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[8]  Fred Mintzer,et al.  Filters for distortion-free two-band multirate filter banks , 1985, IEEE Trans. Acoust. Speech Signal Process..

[9]  Fabrice Rouillier,et al.  Symbolic Recipes for Polynomial System Solving , 1999 .

[10]  Roland Glowinski,et al.  Computational science for the 21st Century , 1997 .

[11]  C. Burrus,et al.  Nonlinear Shrinkage of Undecimated DWT for Noise Reduction and Data Compression , 1995 .

[12]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[13]  I. Daubechies,et al.  Regularity of refinable function vectors , 1997 .

[14]  G. Strang,et al.  Approximation by translates of refinable functions , 1996 .

[15]  Jürgen Bierbrauer,et al.  Construction of orthogonal arrays , 1996 .

[16]  Martin Vetterli,et al.  High-order balanced multiwavelets: theory, factorization, and design , 2001, IEEE Trans. Signal Process..

[17]  Arjeh M. Cohen,et al.  Some tapas of computer algebra , 1999, Algorithms and computation in mathematics.

[18]  Fran e Abstra Solving Some Overdetermined Polynomial Systems , 1999 .

[19]  E. W. Ng Symbolic and Algebraic Computation , 1979, Lecture Notes in Computer Science.

[20]  Ivan W. Selesnick,et al.  Iterated oversampled filter banks and wavelet frames , 2000, SPIE Optics + Photonics.

[21]  C. Sidney Burrus,et al.  Nonlinear processing of a shift-invariant discrete wavelet transform (DWT) for noise reduction , 1995, Defense, Security, and Sensing.

[22]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[23]  Zuowei Shen,et al.  An algorithm for matrix extension and wavelet construction , 1996, Math. Comput..

[24]  Fabrice Rouillier,et al.  Design of regular nonseparable bidimensional wavelets using Grobner basis techniques , 1998, IEEE Trans. Signal Process..

[25]  George C. Donovan,et al.  Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .

[26]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[27]  V. Strela,et al.  Construction of multiscaling functions with approximation and symmetry , 1998 .

[28]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[29]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[30]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[31]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Gilbert Strang,et al.  Short wavelets and matrix dilation equations , 1995, IEEE Trans. Signal Process..

[33]  James L. Flanagan,et al.  Digital coding of speech in sub-bands , 1976, The Bell System Technical Journal.

[34]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[35]  Ivan W. Selesnick,et al.  Interpolating multiwavelet bases and the sampling theorem , 1999, IEEE Trans. Signal Process..

[36]  D. Hardin,et al.  Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .

[37]  Ivan W. Selesnick,et al.  Multiwavelet bases with extra approximation properties , 1998, IEEE Trans. Signal Process..

[38]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[39]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[40]  S. Mallat A wavelet tour of signal processing , 1998 .

[41]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[42]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[43]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[44]  I. Selesnick Smooth wavelet tight frames with zero moments: Design and properties , 2000 .

[45]  Ivan W. Selesnick Balanced multiwavelet bases based on symmetric FIR filters , 2000, IEEE Trans. Signal Process..

[46]  Martin Vetterli,et al.  Gröbner Bases and Multidimensional FIR Multirate Systems , 1997, Multidimens. Syst. Signal Process..

[47]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[48]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[49]  Hal Schenck,et al.  Computational Algebraic Geometry , 2003 .

[50]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[51]  C. Chui,et al.  A study of orthonormal multi-wavelets , 1996 .

[52]  R. Jia,et al.  Approximation by multiinteger translates of functions having global support , 1993 .

[53]  Albert Cohen,et al.  Biorthogonal wavelets , 1993 .

[54]  T. Barnwell,et al.  A procedure for designing exact reconstruction filter banks for tree-structured subband coders , 1984, ICASSP.

[55]  Dong Wei,et al.  Generalized coiflets with nonzero-centered vanishing moments , 1998 .

[56]  Martin Vetterli,et al.  Balanced multiwavelets theory and design , 1998, IEEE Trans. Signal Process..

[57]  C. Burrus,et al.  Noise reduction using an undecimated discrete wavelet transform , 1996, IEEE Signal Processing Letters.

[58]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[59]  Olivier Rioul,et al.  A discrete-time multiresolution theory , 1993, IEEE Trans. Signal Process..

[60]  C. Chui,et al.  Compactly supported tight frames associated with refinable functions , 2000 .

[61]  C. Sidney Burrus,et al.  Nonlinear Processing of a Shift Invariant DWT for Noise Reduction , 1995 .

[62]  David K. Ruch,et al.  On the Support Properties of Scaling Vectors , 1996 .