Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators.

[1]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[2]  S. Kiselev,et al.  Phenomenological theory of laser-plasma interaction in ``bubble'' regime , 2004 .

[3]  Eric H. Esarey,et al.  Laser wakefield acceleration and relativistic optical guiding , 1988 .

[4]  S. M. Wiggins,et al.  Electron beam pointing stability of a laser wakefield accelerator , 2009, Optics + Optoelectronics.

[5]  H. Chung,et al.  Time-resolved plasma temperature measurements in a laser-triggered hydrogen-filled capillary discharge waveguide , 2011 .

[6]  Wei Lu,et al.  OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators , 2002, International Conference on Computational Science.

[7]  Alexandre Loulergue,et al.  Beam manipulation for compact laser wakefield accelerator based free-electron lasers , 2015 .

[8]  Dino A. Jaroszynski,et al.  Coherent radiation sources based on laser plasma accelerators , 2002 .

[9]  Eric Esarey,et al.  Electron Injection into Plasma Wake Fields by Colliding Laser Pulses , 1997 .

[10]  David Neely,et al.  Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators , 2015 .

[11]  Gregor H. Welsh,et al.  Near-threshold electron injection in the laser–plasma wakefield accelerator leading to femtosecond bunches , 2015 .

[12]  R Issac,et al.  Radiation sources based on laser–plasma interactions , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  I. V. Glazyrin,et al.  Ionization induced trapping in a laser wakefield accelerator. , 2009, Physical review letters.

[14]  V. Khudik,et al.  Hamiltonian analysis of electron self-injection and acceleration into an evolving plasma bubble , 2010 .

[15]  Sebastian M. Pfotenhauer,et al.  A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator , 2008 .

[16]  A Pak,et al.  Injection and trapping of tunnel-ionized electrons into laser-produced wakes. , 2009, Physical review letters.

[17]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[18]  C. Geddes,et al.  Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. , 2003, Physical review letters.

[19]  Z. M. Sheng,et al.  Bright betatron X-ray radiation from a laser-driven-clustering gas target , 2013, Scientific Reports.

[20]  V. Vlachoudis,et al.  The FLUKA Code: Developments and Challenges for High Energy and Medical Applications , 2014 .

[21]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[22]  A Mostacci,et al.  Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulations , 2014, Physics in medicine and biology.

[23]  A. Pukhov,et al.  A multidimensional theory for electron trapping by a plasma wake generated in the bubble regime , 2010 .

[24]  Ursula Keller,et al.  Comparison of different approaches to the longitudinal momentum spread after tunnel ionization , 2013, 1303.3209.

[25]  A. Maier,et al.  Demonstration scheme for a laser-plasma driven free-electron laser , 2012 .

[26]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[27]  Victor Malka,et al.  Ultra-short electron beams based spatio-temporal radiation biology and radiotherapy. , 2010, Mutation research.

[28]  Slobodan Devic,et al.  Radiochromic film dosimetry: past, present, and future. , 2011, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[29]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[30]  B. Ersfeld,et al.  Coherent radiation sources based on laser driven plasma waves , 2015, 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[31]  W. A. Gillespie,et al.  High quality electron beams from a laser wakefield accelerator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[32]  Victor Malka,et al.  Physics of fully-loaded laser-plasma accelerators , 2015 .

[33]  J. Vieira,et al.  Persistence of magnetic field driven by relativistic electrons in a plasma , 2015, Nature Physics.

[34]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[35]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[36]  M. Bornatici,et al.  Wave beam propagation in a weakly inhomogeneous isotropic medium: paraxial approximation and beyond , 2003 .

[37]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[38]  M. V. Ammosov Tunnel ionization of complex atoms and of atomic ions in an altemating electromagnetic field , 1987 .

[39]  P. P. Rajeev,et al.  Gamma-rays from harmonically resonant betatron oscillations in a plasma wake , 2011 .

[40]  A. Ferrari,et al.  FLUKA: A Multi-Particle Transport Code , 2005 .

[41]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[42]  M. Spanner,et al.  Anatomy of strong field ionization , 2005 .

[43]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[44]  Y. Gauduel,et al.  High energy radiation femtochemistry of water molecules: early electron-radical pairs processes , 2010 .

[45]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[46]  D. Gordon,et al.  Observation of large-angle quasimonoenergetic electrons from a laser wakefield. , 2007, Physical review letters.

[47]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[48]  Alexander Pukhov,et al.  Strong field interaction of laser radiation , 2003 .

[49]  Lu Zhang,et al.  Electron acceleration via high contrast laser interacting with submicron clusters , 2012 .

[50]  Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator. , 2015, Physical review letters.

[51]  D. Jaroszynski,et al.  Plasma expansion into a waveguide created by a linearly polarized femtosecond laser pulse , 2013 .

[52]  L B Madsen,et al.  Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit. , 2012, Physical review letters.

[53]  Vladimir P. Krainov,et al.  Tunnel Ionization Of Complex Atoms And Atomic Ions In Electromagnetic Field , 1986, Other Conferences.

[54]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[55]  Erik Lefebvre,et al.  Electron self-injection into an evolving plasma bubble: Quasi monoenergetic laser-plasma acceleration in the blowout regime , 2011 .

[56]  S. V. Bulanov,et al.  Bow wave from ultraintense electromagnetic pulses in plasmas. , 2008, Physical review letters.

[57]  Warren B. Mori,et al.  Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25TW lasersa) , 2006 .

[58]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.