Parameterized quantum circuits as machine learning models

Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be thought of as machine learning models with remarkable expressive power. This Review presents components of these models and discusses their application to a variety of data-driven tasks such as supervised learning and generative modeling. With experimental demonstrations carried out on actual quantum hardware, and with software actively being developed, this rapidly growing field could become one of the first instances of quantum computing that addresses real world problems.

[1]  Ross Duncan,et al.  On the qubit routing problem , 2019, TQC.

[2]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[3]  Ian J. Goodfellow,et al.  NIPS 2016 Tutorial: Generative Adversarial Networks , 2016, ArXiv.

[4]  Seth Lloyd,et al.  Quantum Generative Adversarial Learning. , 2018, Physical review letters.

[5]  Patrick J. Coles,et al.  Variational quantum state diagonalization , 2018, npj Quantum Information.

[6]  H. Robbins A Stochastic Approximation Method , 1951 .

[7]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[8]  Klaus Molmer,et al.  Quantum learning by measurement and feedback , 2008, 0803.1418.

[9]  Simone Severini,et al.  Experimental learning of quantum states , 2017, Science Advances.

[10]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[11]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[12]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[13]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[14]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[15]  James C. Spall,et al.  A one-measurement form of simultaneous perturbation stochastic approximation , 1997, Autom..

[16]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[17]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[18]  Shenggen Zheng,et al.  Quantum generative adversarial network for generating discrete data , 2018 .

[19]  Alán Aspuru-Guzik,et al.  Variational Quantum Factoring , 2018, QTOP@NetSys.

[20]  Patrick J. Coles,et al.  Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.

[21]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[22]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[23]  Jun Li,et al.  Hybrid Quantum-Classical Approach to Quantum Optimal Control. , 2016, Physical review letters.

[24]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[25]  Pedro Chamorro-Posada,et al.  swap test and Hong-Ou-Mandel effect are equivalent , 2013, 1303.6814.

[26]  M. Sohaib Alam,et al.  Quantum Kitchen Sinks: An algorithm for machine learning on near-term quantum computers , 2018, 1806.08321.

[27]  Isaac L. Chuang,et al.  Quantum Inference on Bayesian Networks , 2014, ArXiv.

[28]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[29]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[30]  Russell C. Eberhart,et al.  Human tremor analysis using particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[31]  Kathleen E. Hamilton,et al.  Generative model benchmarks for superconducting qubits , 2018, Physical Review A.

[32]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[33]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[34]  Nathan Killoran,et al.  Quantum generative adversarial networks , 2018, Physical Review A.

[35]  Chiara Macchiavello,et al.  An artificial neuron implemented on an actual quantum processor , 2018, npj Quantum Information.

[36]  Andrew W. Cross,et al.  Demonstration of quantum advantage in machine learning , 2015, npj Quantum Information.

[37]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[38]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[39]  Peter D. Johnson,et al.  QVECTOR: an algorithm for device-tailored quantum error correction , 2017, 1711.02249.

[40]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[41]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[42]  Stefan Woerner,et al.  Quantum Generative Adversarial Networks for learning and loading random distributions , 2019, npj Quantum Information.

[43]  Bin Yu,et al.  Local Identifiability of $\ell_1$-minimization Dictionary Learning: a Sufficient and Almost Necessary Condition , 2015, J. Mach. Learn. Res..

[44]  Peter I. Frazier,et al.  A Tutorial on Bayesian Optimization , 2018, ArXiv.

[45]  Gilles Brassard,et al.  Machine Learning in a Quantum World , 2006, Canadian AI.

[46]  Amnon Shashua,et al.  Quantum Entanglement in Deep Learning Architectures. , 2018, Physical review letters.

[47]  Jeongho Bang,et al.  Learning unknown pure quantum states , 2018, Physical Review A.

[48]  D Zhu,et al.  Training of quantum circuits on a hybrid quantum computer , 2018, Science Advances.

[49]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[50]  Keisuke Fujii,et al.  Methodology for replacing indirect measurements with direct measurements , 2018, Physical Review Research.

[51]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[52]  Peter Wittek,et al.  Open source software in quantum computing , 2018, PloS one.

[53]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[54]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[55]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[56]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[57]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[58]  M. Ledoux The concentration of measure phenomenon , 2001 .

[59]  John Napp,et al.  Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms. , 2019, Physical review letters.

[60]  David J. Schwab,et al.  Supervised Learning with Tensor Networks , 2016, NIPS.

[61]  Jun Wang,et al.  Unsupervised Generative Modeling Using Matrix Product States , 2017, Physical Review X.

[62]  Alejandro Perdomo-Ortiz,et al.  Robust implementation of generative modeling with parametrized quantum circuits , 2019, Quantum Machine Intelligence.

[63]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[64]  S. Aaronson Read the fine print , 2015, Nature Physics.

[65]  Gunnar Rätsch,et al.  Learning Unitary Operators with Help From u(n) , 2016, AAAI.

[66]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[67]  Shu-Hao Wu,et al.  Quantum generative adversarial learning in a superconducting quantum circuit , 2018, Science Advances.

[68]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[69]  Jing Chen,et al.  Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines , 2017, Entropy.

[70]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[71]  Terry Farrelly,et al.  Training deep quantum neural networks , 2019, Nature Communications.

[72]  Yann LeCun,et al.  Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs , 2016, ICML.

[73]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[74]  Oscar Dahlsten,et al.  Learning Simon's quantum algorithm , 2018, 1806.10448.

[75]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[76]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[77]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[78]  Simone Severini,et al.  Universal discriminative quantum neural networks , 2018, Quantum Machine Intelligence.

[79]  Martin Rötteler,et al.  Quantum algorithms for highly non-linear Boolean functions , 2008, SODA '10.

[80]  Les E. Atlas,et al.  Full-Capacity Unitary Recurrent Neural Networks , 2016, NIPS.

[81]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[82]  Simone Severini,et al.  Hierarchical quantum classifiers , 2018, npj Quantum Information.

[83]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[84]  James C. Spall,et al.  Adaptive stochastic approximation by the simultaneous perturbation method , 2000, IEEE Trans. Autom. Control..

[85]  Yang Yu,et al.  ZOOpt: a toolbox for derivative-free optimization , 2017, Science China Information Sciences.

[86]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[87]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[88]  Masoud Mohseni,et al.  Commercialize quantum technologies in five years , 2017, Nature.

[89]  Xi Chen,et al.  Experimental Implementation of a Quantum Autoencoder via Quantum Adders , 2018, Advanced Quantum Technologies.

[90]  Roger Colbeck,et al.  Introduction to UniversalQCompiler , 2019, ArXiv.

[91]  M. Benedetti,et al.  Quantum circuit structure learning , 2019, 1905.09692.

[92]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[93]  J. Tangpanitanon,et al.  Quantum supremacy with analog quantum processors for material science and machine learning , 2019, 1906.03860.

[94]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[95]  E. Torrontegui,et al.  Unitary quantum perceptron as efficient universal approximator , 2018, EPL (Europhysics Letters).

[96]  Jeongho Bang,et al.  Quantum Learning Machine , 2008, 0803.2976.

[97]  Jacob Biamonte,et al.  Variational learning of Grover's quantum search algorithm , 2018, Physical Review A.

[98]  José David Martín-Guerrero,et al.  Quantum autoencoders via quantum adders with genetic algorithms , 2017, Quantum Science and Technology.

[99]  Jiangping Hu,et al.  Learning and Inference on Generative Adversarial Quantum Circuits , 2018, Physical Review A.

[100]  Simone Severini,et al.  Adversarial quantum circuit learning for pure state approximation , 2018, New Journal of Physics.

[101]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[102]  Michael J. Bremner,et al.  Quantum sampling problems, BosonSampling and quantum supremacy , 2017, npj Quantum Information.

[103]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[104]  David J. Schwab,et al.  An exact mapping between the Variational Renormalization Group and Deep Learning , 2014, ArXiv.

[105]  Alan Aspuru-Guzik,et al.  Variational Quantum Generators: Generative Adversarial Quantum Machine Learning for Continuous Distributions , 2019, Advanced Quantum Technologies.

[106]  Gian Giacomo Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[107]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[108]  Alán Aspuru-Guzik,et al.  Quantum Neuron: an elementary building block for machine learning on quantum computers , 2017, ArXiv.

[109]  Dirk Oliver Theis,et al.  Input Redundancy for Parameterized Quantum Circuits , 2019, Frontiers in Physics.

[110]  Alejandro Perdomo-Ortiz,et al.  A generative modeling approach for benchmarking and training shallow quantum circuits , 2018, npj Quantum Information.

[111]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[112]  Maxwell Henderson,et al.  Quanvolutional neural networks: powering image recognition with quantum circuits , 2019, Quantum Machine Intelligence.

[113]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[114]  Michael Broughton,et al.  A Universal Training Algorithm for Quantum Deep Learning , 2018, 1806.09729.

[115]  Elham Kashefi,et al.  The Born supremacy: quantum advantage and training of an Ising Born machine , 2019, npj Quantum Information.

[116]  Keisuke Fujii,et al.  Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.

[117]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[118]  Bernhard Schölkopf,et al.  A Kernel Approach to Comparing Distributions , 2007, AAAI.

[119]  Dacheng Tao,et al.  The Expressive Power of Parameterized Quantum Circuits , 2018, ArXiv.

[120]  Lei Wang,et al.  Differentiable Learning of Quantum Circuit Born Machine , 2018, Physical Review A.

[121]  Gang Su,et al.  Machine learning by unitary tensor network of hierarchical tree structure , 2017, New Journal of Physics.

[122]  S. Brierley,et al.  Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.