Tool position estimation of a flexible industrial robot using recursive bayesian methods

A sensor fusion method for state estimation of a flexible industrial robot is presented. By measuring the acceleration at the end-effector, the accuracy of the arm angular position is improved significantly when these measurements are fused with motor angle observation. The problem is formulated in a Bayesian estimation framework and two solutions are proposed; one using the extended Kalman filter (EKF) and one using the particle filter (PF). The technique is verified on experiments on the ABB IRB4600 robot, where the accelerometer method is showing a significant better dynamic performance, even when model errors are present.

[1]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[2]  Jon Rigelsford,et al.  Modelling and Control of Robot Manipulators , 2000 .

[3]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[4]  M. Norrlof,et al.  Bayesian position estimation of an industrial robot using multiple sensors , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[5]  Krzysztof Kozłowski,et al.  Modelling and Identification in Robotics , 1998 .

[6]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[7]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[8]  Patrik Axelsson,et al.  Estimation of Orientation and Position of an Accelerometer Mounted to an Industrial Manipulator , 2011 .

[9]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[10]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[11]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[12]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[13]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[14]  Fredrik Gustafsson,et al.  Statistical Sensor Fusion , 2013 .

[15]  Dan S. Necsulescu,et al.  Extended Kalman filter-based sensor fusion for operational space control of a robot arm , 2002, IEEE Trans. Instrum. Meas..

[16]  Gerasimos G. Rigatos,et al.  Particle Filtering for State Estimation in Nonlinear Industrial Systems , 2009, IEEE Transactions on Instrumentation and Measurement.

[17]  Rickard Karlsson,et al.  Position estimation and modeling of a flexible industrial robot , 2005 .

[18]  Stig Moberg,et al.  Modeling and Control of Flexible Manipulators , 2007 .

[19]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[20]  M. Norrlof,et al.  Iterative learning control of a flexible robot arm using accelerometers , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[21]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[22]  Patrik Axelsson,et al.  Method to Estimate the Position and Orientation of a Triaxial Accelerometer Mounted to an Industrial Manipulator , 2012, SyRoCo.