Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins.

Glycodendrimersomes with programmable surface display of glycan, together with artificially engineered galectins, were used to understand the physiological significance of human lectins with homodimeric and tandem-repeat-type displays. The mode of topological surface presentation and the density of glycan affected vesicle aggregation mediated by multivalent carbohydrate-protein interactions. The cross-linking capacity of homodimeric lectins was enhanced by covalent connection of the two carbohydrate-binding sites. These findings highlight the value of glycodendrimersomes as versatile cell membrane mimetics, and assays provide diagnostic tools for protein functionality. This work also provides guidelines for the design of cell separators, bioactive matrices, bioeffectors, and other biomedical applications.

[1]  Yang Wang,et al.  Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. , 2014, Angewandte Chemie.

[2]  M. Klein,et al.  Mimicking biological membranes with programmable glycan ligands self-assembled from amphiphilic Janus glycodendrimers. , 2014, Angewandte Chemie.

[3]  M. Klein,et al.  Self-assembly of amphiphilic Janus dendrimers into uniform onion-like dendrimersomes with predictable size and number of bilayers , 2014, Proceedings of the National Academy of Sciences.

[4]  M. Filippi,et al.  Dendrimersomes: a new vesicular nano-platform for MR-molecular imaging applications. , 2014, Chemical communications.

[5]  V. Percec,et al.  "Single-single" amphiphilic janus dendrimers self-assemble into uniform dendrimersomes with predictable size. , 2014, ACS nano.

[6]  Shaodong Zhang,et al.  Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. , 2013, Journal of the American Chemical Society.

[7]  L. Kiessling,et al.  Glycopolymer probes of signal transduction. , 2013, Chemical Society reviews.

[8]  Juan Correa,et al.  Real-time evaluation of binding mechanisms in multivalent interactions: a surface plasmon resonance kinetic approach. , 2013, Journal of the American Chemical Society.

[9]  D. Haddleton,et al.  Synthetic Glycopolymers: Some Recent Developments , 2013 .

[10]  Yoshiko Miura,et al.  Design and synthesis of well-defined glycopolymers for the control of biological functionalities , 2012 .

[11]  Matthew J. C. Crump,et al.  High-affinity disaccharide binding by tricyclic synthetic lectins. , 2012, Angewandte Chemie.

[12]  H Kaltner,et al.  A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. , 2012, Histology and histopathology.

[13]  G. Huet,et al.  Beyond glycoproteins as galectin counterreceptors: tumor‐effector T cell growth control via ganglioside GM1 , 2012, Annals of the New York Academy of Sciences.

[14]  V. Percec,et al.  Predicting the size and properties of dendrimersomes from the lamellar structure of their amphiphilic Janus dendrimers. , 2011, Journal of the American Chemical Society.

[15]  L. Earl,et al.  Galectin multimerization and lattice formation are regulated by linker region structure. , 2011, Glycobiology.

[16]  J. Kopitz,et al.  How adhesion/growth‐regulatory galectins‐1 and ‐3 attain cell specificity: Case study defining their target on neuroblastoma cells (SK‐N‐MC) and marked affinity regulation by affecting microdomain organization of the membrane , 2010, IUBMB life.

[17]  M. Sauer,et al.  Hydrodynamic properties of human adhesion/growth-regulatory galectins studied by fluorescence correlation spectroscopy. , 2010, Biophysical journal.

[18]  M. Klein,et al.  Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes and Other Complex Architectures , 2010, Science.

[19]  R. Roy,et al.  Design and Creativity in Synthesis of Multivalent Neoglycoconjugates , 2010, Advances in Carbohydrate Chemistry and Biochemistry.

[20]  D. Appelhans,et al.  Glycopolymers of Various Architectures—More than Mimicking Nature , 2010 .

[21]  J. Lehn,et al.  Glycodynamers: fluorescent dynamic analogues of polysaccharides. , 2008, Angewandte Chemie.

[22]  M. Eisenstein,et al.  It depends on the hinge: a structure-functional analysis of galectin-8, a tandem-repeat type lectin. , 2006, Glycobiology.

[23]  Peter H Seeberger,et al.  Carbohydrates as the next frontier in pharmaceutical research. , 2005, Chemistry.

[24]  M. Bachmann,et al.  Enhanced apoptotic activity of a structurally optimized form of galectin-1. , 2004, Molecular immunology.

[25]  Douglas N W Cooper,et al.  Galectinomics: finding themes in complexity. , 2002, Biochimica et biophysica acta.

[26]  J. F. Stoddart,et al.  Large oligosaccharide-based glycodendrimers. , 2002, Chemistry.

[27]  C. Bertozzi,et al.  Homogeneous glycopeptides and glycoproteins for biological investigation. , 2002, Annual review of biochemistry.

[28]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[29]  G. M. Whitesides,et al.  Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren , 1998 .

[30]  M. Caron,et al.  Is human galectin-1 activity modulated by monomer/dimer equilibrium? , 1997, Glycobiology.

[31]  L. Baum,et al.  Induction of T Lymphocyte Apoptosis: A Novel Function for Galectin-1 , 1997 .

[32]  J. Hirabayashi,et al.  Galectins: a family of animal lectins that decipher glycocodes. , 1996, Journal of biochemistry.

[33]  Yuan-chuan Lee,et al.  Carbohydrate-Protein Interactions: Basis of Glycobiology , 1995 .

[34]  R. Cummings,et al.  L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. , 1993, Archives of biochemistry and biophysics.

[35]  H. Gabius Tumorlectinologie: Ein Gebiet im Schnittpunkt von Zuckerchemie, Biochemie, Zellbiologie und Onkologie† , 1988 .

[36]  Tumor Lectinology: At the Intersection of Carbohydrate Chemistry, Biochemistry, Cell Biology, and Oncology , 1988 .

[37]  R. Schnaar,et al.  Cell‐Surface Carbohydrates in Cell Recognition and Response , 1986, Journal of leukocyte biology.

[38]  M. W. Peters,et al.  Lectin-membrane interactions. Information from model systems. , 1984, Biochimica et biophysica acta.