Long time step molecular dynamics using targeted Langevin stabilization

We introduce the B-spline Mollified Impulse (MOLLY) and the Targeted MOLLY (TM) for molecular dynamics (MD). TM uses targeted Langevin coupling to stabilize B-spline MOLLY. Results show that with a proper choice of parameters, the radial distribution function can be correctly recovered and the self-diffusion co-efficient can be correctly estimated from MD simulations of flexible waters using TM with outer time step of 16 fs, and a six-fold speedup is obtained. The basis of comparison is leapfrog with time step of 1 fs The overhead associated with mollification is low. Extention to handle larger molecules is discussed.

[1]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[2]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[3]  R. Skeel,et al.  Langevin stabilization of molecular dynamics , 2001 .

[4]  Thierry Matthey,et al.  Overcoming Instabilities in Verlet-I/r-RESPA with the Mollified Impulse Method , 2002 .

[5]  D. Saad Europhysics Letters , 1997 .

[6]  J. Izaguirre Longer Time Steps for Molecular Dynamics , 1999 .

[7]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[8]  Jesús A. Izaguirre,et al.  Verlet-I/R-RESPA/Impulse is Limited by Nonlinear Instabilities , 2003, SIAM J. Sci. Comput..

[9]  T. Schlick,et al.  Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN , 1998 .

[10]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[11]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[12]  G. Martyna,et al.  Electrostatic calculations and multiple time scales in molecular dynamics simulation of flexible molecular systems , 1998 .

[13]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[14]  Edward D Harder,et al.  Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems , 2001 .

[15]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[16]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[17]  Thierry Matthey,et al.  ProtoMol: A Molecular Dynamics Framework with Incremental Parallelization , 2001, PPSC.

[18]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[19]  K. Schulten,et al.  Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics , 1997 .

[20]  Robert D. Skeel,et al.  Dangers of multiple time step methods , 1993 .

[21]  Karttunen,et al.  Towards better integrators for dissipative particle dynamics simulations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Ignacio Pagonabarraga,et al.  Self-consistent dissipative particle dynamics algorithm , 1998 .

[23]  A. Karimi,et al.  Master‟s thesis , 2011 .