Ultrafast laser printing of self-organized bimetallic nanotextures for multi-wavelength biosensing

[1]  W. Koh,et al.  Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. , 2018, Biosensors & bioelectronics.

[2]  P. Stoddart,et al.  From Fundamental toward Applied SERS: Shared Principles and Divergent Approaches , 2018, Advanced Optical Materials.

[3]  D. Baranov,et al.  Photoluminescence quenching of dye molecules near a resonant silicon nanoparticle , 2018, Scientific Reports.

[4]  Young‐Jin Kim,et al.  Broadband Plasmonic Antenna Enhanced Upconversion and Its Application in Flexible Fingerprint Identification , 2018 .

[5]  N. Kherani,et al.  Multiwavelength Surface‐Enhanced Raman Spectroscopy Using Rainbow Trapping in Width‐Graded Plasmonic Gratings , 2018 .

[6]  S. Juodkazis,et al.  Single-Step Laser Plasmonic Coloration of Metal Films. , 2018, ACS applied materials & interfaces.

[7]  Saulius Juodkazis,et al.  Light‐Induced Tuning and Reconfiguration of Nanophotonic Structures , 2017 .

[8]  C. Fotakis,et al.  Biomimetic surface structuring using cylindrical vector femtosecond laser beams , 2016, Scientific Reports.

[9]  S. Khonina,et al.  On-Fly Femtosecond-Laser Fabrication of Self-Organized Plasmonic Nanotextures for Chemo- and Biosensing Applications. , 2016, ACS applied materials & interfaces.

[10]  D. Poitras,et al.  Laser-induced plasmonic colours on metals , 2016, Nature Communications.

[11]  Duncan Graham,et al.  Surface-enhanced Raman scattering , 1998 .

[12]  O. Vitrik,et al.  Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness , 2016 .

[13]  Y. Nishijima,et al.  Au-Ag-Cu nano-alloys: tailoring of permittivity , 2016, Scientific Reports.

[14]  Dong Liu,et al.  Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays. , 2016, Angewandte Chemie.

[15]  Ronald Holzwarth,et al.  Ablation-cooled material removal with ultrafast bursts of pulses , 2016, Nature.

[16]  Saulius Juodkazis,et al.  Ultrafast laser processing of materials: from science to industry , 2016, Light: Science & Applications.

[17]  L. Zhigilei,et al.  Nanocrystalline and Polyicosahedral Structure of a Nanospike Generated on Metal Surface Irradiated by a Single Femtosecond Laser Pulse , 2016 .

[18]  Joseph Huff The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution , 2015, Nature Methods.

[19]  A. Sa’ar,et al.  Laser jetting of femto-liter metal droplets for high resolution 3D printed structures , 2015, Scientific Reports.

[20]  Y. Kulchin,et al.  Ion-beam assisted laser fabrication of sensing plasmonic nanostructures , 2015, Scientific Reports.

[21]  Saulius Juodkazis,et al.  Plasmonic color analysis of Ag-coated black-Si SERS substrate. , 2015, Physical chemistry chemical physics : PCCP.

[22]  Chao Sun,et al.  Toward 3D Printing of Pure Metals by Laser‐Induced Forward Transfer , 2015, Advanced materials.

[23]  O. Vitrik,et al.  Laser ablative fabrication of nanocrowns and nanojets on the Cu supported film surface using femtosecond laser pulses , 2015, 1506.02330.

[24]  S. V. Karpeev,et al.  Nanoscale boiling during single-shot femtosecond laser ablation of thin gold films , 2015 .

[25]  L. Zhigilei,et al.  Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target , 2015 .

[26]  Tianrui Zhai,et al.  Polarization-dependent SERS effects of laser-generated sub-100 nm antenna structures , 2014, Nanotechnology.

[27]  S. Juodkazis,et al.  Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances , 2014 .

[28]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[29]  P. Balling,et al.  Material swelling as the first step in the ablation of metals by ultrashort laser pulses , 2011 .

[30]  Peter G. Kazansky,et al.  Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass , 2011 .

[31]  Boris N. Chichkov,et al.  Laser fabrication of large-scale nanoparticle arrays for sensing applications. , 2011, ACS nano.

[32]  F. Neri,et al.  The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering , 2009, Nanotechnology.

[33]  J. Lakowicz,et al.  Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. , 2008, The Analyst.

[34]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[35]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[36]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[37]  L. Manna,et al.  Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control , 2006, Nature nanotechnology.

[38]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[39]  Shengjie Li,et al.  Recent Advances , 2018, Journal of Optimization Theory and Applications.

[40]  Saulius,et al.  SERS comparison from Au, Ag, and Au-Ag alloys: insights by the first principles , 2018 .

[41]  O. Vitrik,et al.  Plasmon-mediated Enhancement of Rhodamine 6G Spontaneous Emission on Laser-spalled Nanotextures , 2017 .

[42]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[43]  Katrin Kneipp,et al.  Surface-enhanced Raman scattering , 2006 .

[44]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[45]  C. Carter,et al.  Science in Industry , 1919, Nature.