Cool diffusion flames in a stably stratified stagnation flow

[1]  D. Dietrich,et al.  Spherical gas-fueled cool diffusion flames , 2022, Proceedings of the Combustion Institute.

[2]  D. Dietrich,et al.  Asymptotic analysis of cool-flame propagation in mixtures of an n-alkane, oxygen, and nitrogen , 2021, Combustion Theory and Modelling.

[3]  Y. Ju,et al.  Ignition characteristics of premixed cool flames on a heated wall , 2021 .

[4]  E. Belmont,et al.  Experimental characterization of ozone-enhanced n-decane cool flames and numerical investigation of equivalence ratio dependence , 2021 .

[5]  Y. Ju Understanding cool flames and warm flames , 2020 .

[6]  cool flames , 2020, Catalysis from A to Z.

[7]  E. Belmont,et al.  Investigation of the structure and propagation speeds of n-heptane cool flames , 2019, Combustion and Flame.

[8]  Jianren Fan,et al.  Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames , 2019, Applied Energy.

[9]  S. M. Sarathy,et al.  Cool diffusion flames of butane isomers activated by ozone in the counterflow , 2018 .

[10]  Y. Ju,et al.  Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction , 2017 .

[11]  P. Massoli,et al.  Experimental Observations of the Low-Temperature Burning of Decane/Hexanol Droplets in Microgravity , 2017 .

[12]  F. Williams,et al.  Asymptotic analysis of quasi-steady n-heptane droplet combustion supported by cool-flame chemistry , 2016 .

[13]  D. Dietrich,et al.  Cool-flame extinction during n-alkane droplet combustion in microgravity , 2015 .

[14]  F. Williams,et al.  The role of cool-flame chemistry in quasi-steady combustion and extinction of n-heptane droplets , 2014 .

[15]  F. Dryer,et al.  Isolated n-heptane droplet combustion in microgravity: “Cool Flames” – Two-stage combustion , 2014 .

[16]  Chung King Law,et al.  The role of global and detailed kinetics in the first-stage ignition delay in NTC-affected phenomena , 2013 .

[17]  Forman A. Williams,et al.  Can cool flames support quasi-steady alkane droplet burning? , 2012 .

[18]  Tianfeng Lu,et al.  Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study , 2011 .

[19]  Mingfa Yao,et al.  Progress and recent trends in homogeneous charge compression ignition (HCCI) engines , 2009 .

[20]  M. Mehl,et al.  Autoignition and burning rates of fuel droplets under microgravity , 2005 .

[21]  Y. Ju,et al.  On the chemical characteristics and dynamics of n-alkane low-temperature multistage diffusion flames , 2019, Proceedings of the Combustion Institute.

[22]  D. Dietrich,et al.  Three stage cool flame droplet burning behavior of n-alkane droplets at elevated pressure conditions: Hot, warm and cool flame , 2019, Proceedings of the Combustion Institute.

[23]  Y. Ju,et al.  Thermo-kinetic dynamics of near-limit cool diffusion flames , 2017 .

[24]  Bo Jiang,et al.  Self-sustaining n-heptane cool diffusion flames activated by ozone , 2015 .

[25]  R. Reitz Directions in internal combustion engine research , 2013 .

[26]  H. Davy VIII. Some new experiments and observations on the combustion of gaseous mixtures, with an account of a method of preserving a continued light in mixtures of inflammable gases and air without flame , 1817, Philosophical Transactions of the Royal Society of London.