Nontrivial solutions of Kirchhoff-type problems via the Yang index

Abstract We obtain nontrivial solutions of a class of nonlocal quasilinear elliptic boundary value problems using the Yang index and critical groups.

[1]  Michel Chipot,et al.  On a class of nonlocal nonlinear elliptic problems , 1992 .

[2]  P. Gillis Sur une classe d'équations aux dérivées partielles , 1936 .

[3]  Marcelo M. Cavalcanti,et al.  Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation , 2001, Advances in Differential Equations.

[4]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[5]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .

[6]  Stefano Panizzi,et al.  On the Well-Posedness of the Kirchhoff String , 1996 .

[7]  Kung-Ching Chang Infinite Dimensional Morse Theory , 1993 .

[8]  S. Pohožaev,et al.  ON A CLASS OF QUASILINEAR HYPERBOLIC EQUATIONS , 1975 .

[9]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[10]  S. Spagnolo,et al.  Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .

[11]  Michel Chipot,et al.  Some remarks on non local elliptic and parabolic problems , 1997 .

[12]  C. F. Vasconcellos Qn a Non/mear Stationary Problem in Unbounded Domains , 1992 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Jaime E. Muñoz Rivera,et al.  Positive solutions for a nonlinear nonlocal elliptic transmission problem , 2003, Appl. Math. Lett..

[15]  Kuang-Chao Chang In nite Dimensional Morse Theory and Multiple Solution Problems , 1992 .

[16]  Chung-Tao Yang On Theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson, II , 1954 .