Representative volume element size for accurate solid oxide fuel cell cathode reconstructions from focused ion beam tomography data

[1]  E. Ivers-Tiffée,et al.  3D finite element model for reconstructed mixed-conducting cathodes: II. Parameter sensitivity analysis , 2012 .

[2]  P. Bleuet,et al.  Characterisation of Solid Oxide Fuel Cell Ni–8YSZ substrate by synchrotron X-ray nano-tomography: from 3D reconstruction to microstructure quantification , 2012 .

[3]  P. Pommier,et al.  3D Microstructural characterization of a solid oxide fuel cell anode reconstructed by focused ion be , 2011 .

[4]  Ellen Ivers-Tiffée,et al.  Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling , 2011 .

[5]  E. Ivers-Tiffée,et al.  Detailed Microstructure Analysis and 3D Simulations of Porous Electrodes , 2011 .

[6]  N. Shikazono,et al.  Evaluation of SOFC anode polarization simulation using three-dimensional microstructures reconstructed by FIB tomography , 2011 .

[7]  Moses Ender,et al.  Three-dimensional reconstruction of a composite cathode for lithium-ion cells , 2011 .

[8]  E. Ivers-Tiffée,et al.  Electrode Reconstruction by FIB/SEM and Microstructure Modeling , 2010 .

[9]  Nigel P. Brandon,et al.  Microstructural analysis of a solid oxide fuel cell anode using focused ion beam techniques coupled with electrochemical simulation , 2010 .

[10]  Nigel P. Brandon,et al.  X-ray nano computerised tomography of SOFC electrodes using a focused ion beam sample-preparation technique , 2010 .

[11]  Nobuhide Kasagi,et al.  Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images , 2010 .

[12]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[13]  N. Shikazono,et al.  Three-Dimensional Numerical Simulation of Ni-YSZ Anode Polarization Using Reconstructed Microstructure from FIB-SEM Images , 2009 .

[14]  E. Ivers-Tiffée,et al.  3D Electrode Microstructure Reconstruction and Modelling , 2009 .

[15]  P. Shearing,et al.  3D reconstruction of SOFC anodes using a focused ion beam lift-out technique , 2009 .

[16]  Marcio Gameiro,et al.  Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode , 2009 .

[17]  Konstantin Mischaikow,et al.  Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode Interconnectivity , 2009, Microscopy and Microanalysis.

[18]  Wilson K. S. Chiu,et al.  Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution , 2008 .

[19]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[20]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[21]  P. Ried,et al.  Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-d and Ba0.5Sr0.5Co0.8Fe0.2O3-d as Cathode Materials for the Application in Intermediate Temperature Fuel Cells , 2007 .

[22]  E. Ivers-Tiffée,et al.  3D-Modelling and Performance Evaluation of Mixed Conducting (MIEC) Cathodes , 2007 .

[23]  S. Uhlenbruck,et al.  Thin film coating technologies of (Ce,Gd)O2-δ interlayers for application in ceramic high-temperature fuel cells , 2007 .

[24]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[25]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[26]  Andreas Mai,et al.  Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells. Part I. Variation of composition , 2005 .

[27]  C. Croke,et al.  Boundary case of equality in optimal Loewner-type inequalities , 2004, math/0406008.

[28]  B. Boukamp,et al.  Oxygen transport in La0.6Sr0.4Co1−yFeyO3−δ , 2004 .

[29]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[30]  S. Sunde Simulations of Composite Electrodes in Fuel Cells , 2000 .

[31]  I. Metcalfe,et al.  Oxygen stoichiometries in La1−xSrxCo1−yFeyO3−δ perovskites at reduced oxygen partial pressures , 2000 .

[32]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[33]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[34]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[35]  C. Yoon,et al.  Effect of Mn Content in Surface on the Electrochemical Properties of Core-Shell Structured Cathode Materials , 2011 .

[36]  C. Peters Grain-size effects in nanoscaled electrolyte and cathode thin films for solid oxide fuel cells (SOFC) , 2009 .

[37]  B. Rüger Mikrostrukturmodellierung von Elektroden für die Festelektrolytbrennstoffzelle , 2009 .

[38]  Ellen Ivers-Tiffée,et al.  Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells , 2008 .

[39]  W. Jason,et al.  アルゴリズム869:ODRPACK95:範囲制約のある重み付け直交距離回帰コード , 2007 .

[40]  Jürgen Fleig,et al.  The polarization of mixed conducting SOFC cathodes: Effects of surface reaction coefficient, ionic conductivity and geometry , 2004 .

[41]  N. Otsu A threshold selection method from gray level histograms , 1979 .