Interactions of pyrethroids with the voltage-gated sodium channel.

Resumen Interacciones de los piretroides con el canalde sodio controlado por tension electrica Un modelo homologado de la region delporo del canal de sodio controlado portension electrica de la mosca domesticafue desarrollado, basado en la estructuradel canal de sodio Kv1.2, y utilizado parapredecir un punto de ligamiento para pi-retroides y DDT. Algunas prediccionesderivadas del modelo fueron validadasexperimentalmente. El modelo permitedeterminar algunos de los factores cen-trales del mecanismo de accion de los piretroides:1. El punto de ligamiento esta localizadoen una bolsa hidrofobica delimitadapor la ligadura IIS4-S5 y las helicesIIS5/IIIS6, accesible por los lipidos dedoble capa y para los insecticidas li-pido-solubles.2. El punto de ligamiento se forma du-rante la activacion (apertura) del canalde sodio y es consistente con observa-ciones de que los piretroides ligan pre-ferencialmente a canales abiertos.3. Se asume que el ligamiento de pire-troides estabiliza el estado de aperturadel canal. Esto podria tambien expli-car las senales electricas que se obser-varon despues de la repolarizacion 6. Das Modell identifiziert Schlusselstel-len in den Helices des Kv 1.2-Na-trium-Kanals, die wahrscheinlich zurdiese Substanzen beitragen.

[1]  P. Usherwood,et al.  Mutations in DIIS5 and the DIIS4–S5 linker of Drosophila melanogaster sodium channel define binding domains for pyrethroids and DDT , 2007, FEBS letters.

[2]  M. Ashfaq,et al.  Pyrethroid-resistant diamondback moth expresses alternatively spliced sodium channel transcripts with and without T929I mutation. , 2006, Insect biochemistry and molecular biology.

[3]  B. Wallace,et al.  Modelling insecticide-binding sites in the voltage-gated sodium channel. , 2006, The Biochemical journal.

[4]  A. Devonshire,et al.  Identification of mutations in the houseflypara-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides , 1996, Molecular and General Genetics MGG.

[5]  Ian Denholm,et al.  Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica) , 1993, Molecular and General Genetics MGG.

[6]  G. Wang,et al.  Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. , 2003, Cellular signalling.

[7]  A. L. Goldin,et al.  Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin. , 2002, Insect biochemistry and molecular biology.

[8]  Charles J. Cohen,et al.  Activation of Drosophila Sodium Channels Promotes Modification by Deltamethrin , 2000, The Journal of general physiology.

[9]  Masahiro Miyazaki,et al.  Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica) , 1996, Molecular and General Genetics MGG.

[10]  T. Narahashi,et al.  Neuronal ion channels as the target sites of insecticides. , 1996, Pharmacology & toxicology.

[11]  B. Ganetzky,et al.  Developmentally regulated alternative splicing generates a complex array of Drosophila para sodium channel isoforms , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Robin Taylor,et al.  Conformational properties of pyrethroids , 1994, J. Comput. Aided Mol. Des..

[13]  D. M. Soderlund,et al.  Tight genetic linkage between the kdr insecticide resistance trait and a voltage-sensitive sodium channel gene in the house fly. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[14]  B. Khambay,et al.  Relationships between pyrethroid structure and level of resistance in houseflies (Musca domestica L.) , 1994 .

[15]  I. Denholm,et al.  Characterization of the structure-activity relationship of kdr and two variants of super-kdr to pyrethroids in the housefly (Musca domestica L.) , 1987 .

[16]  R. M. Sawicki Unusual response of DDT-resistant houseflies to carbinol analogues of DDT , 1978, Nature.

[17]  D. O'keefe,et al.  Structural and biological link between pyrethroids and DDT in new insecticides , 1978, Nature.

[18]  A. W. Farnham Genetics of resistance of houseflies (Musca domestica L.) to pyrethroids. I. Knock‐down resistance , 1977 .

[19]  G. Holan New Halocyclopropane Insecticides and the Mode of Action of DDT , 1969, Nature.

[20]  B. Fine,et al.  Pattern of Pyrethrin-Resistance in Houseflies , 1961, Nature.