Multilevel Aggregation Methods for Small-World Graphs with Application to Random-Walk Ranking
暂无分享,去创建一个
Van Emden Henson | Hans De Sterck | Geoffrey Sanders | H. D. Sterck | G. Sanders | V. Henson | H. Sterck
[1] William J. Stewart,et al. Introduction to the numerical solution of Markov Chains , 1994 .
[2] Kyle W. Kindle,et al. An iterative aggregation-disaggregation algorithm for solving linear equations , 1986 .
[3] Charalampos E. Tsourakakis. Fast Counting of Triangles in Large Real Networks without Counting: Algorithms and Laws , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[4] T. Y. WilliamJ,et al. Numerical Methods in Markov Chain Modeling , 1992, Operational Research.
[5] Herbert A. Simon,et al. Aggregation of Variables in Dynamic Systems , 1961 .
[6] I. Marek,et al. Convergence theory of some classes of iterative aggregation/disaggregation methods for computing stationary probability vectors of stochastic matrices , 2003 .
[7] Thomas A. Manteuffel,et al. Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..
[8] William L. Briggs,et al. A multigrid tutorial , 1987 .
[9] Graham Horton,et al. A multi-level solution algorithm for steady-state Markov chains , 1994, SIGMETRICS.
[10] François Fouss,et al. Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.
[11] Achi Brandt,et al. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .
[12] Tugrul Dayar,et al. Comparison of Partitioning Techniques for Two-Level Iterative Solvers on Large, Sparse Markov Chains , 1999, SIAM J. Sci. Comput..
[13] Eran Treister,et al. SQUARE & STRETCH MULTIGRID FOR STOCHASTIC MATRIX EIGENPROBLEMS , 2009 .
[14] Thomas A. Manteuffel,et al. Top-level acceleration of adaptive algebraic multilevel methods for steady-state solution to Markov chains , 2011, Adv. Comput. Math..
[15] Hans De Sterck,et al. Recursively Accelerated Multilevel Aggregation for Markov Chains , 2010, SIAM J. Sci. Comput..
[16] Michael K. Molloy. Performance Analysis Using Stochastic Petri Nets , 1982, IEEE Transactions on Computers.
[17] Thomas A. Manteuffel,et al. Multilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking , 2008, SIAM J. Sci. Comput..
[18] Philip E. Gill,et al. Practical optimization , 1981 .
[19] W. Stewart,et al. ITERATIVE METHODS FOR COMPUTING STATIONARY DISTRIBUTIONS OF NEARLY COMPLETELY DECOMPOSABLE MARKOV CHAINS , 1984 .
[20] Thomas A. Manteuffel,et al. Algebraic Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..
[21] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[22] S. Leutenegger,et al. ON THE UTILITY OF THE MULTI-LEVEL ALGORITHM FOR THE SOLUTION OF NEARLY COMPLETELY DECOMPOSABLE MARKOV CHAINS , 1994 .
[23] Charalampos E. Tsourakakis. Fast Counting of Triangles in Large Real Networks : Algorithms and Laws , 2008 .
[24] Udo R. Krieger,et al. On a two-level multigrid solution method for finite Markov chains , 1995 .
[25] Hans De Sterck,et al. Multilevel Space-Time Aggregation for Bright Field Cell Microscopy Segmentation and Tracking , 2010, Int. J. Biomed. Imaging.
[26] Marian Brezina,et al. Algebraic Multigrid on Unstructured Meshes , 1994 .
[27] Irad Yavneh,et al. Square and stretch multigrid for stochastic matrix eigenproblems , 2010, Numer. Linear Algebra Appl..
[28] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..
[29] M. Fiedler. Algebraic connectivity of graphs , 1973 .
[30] I. Marek,et al. Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices , 1998, Numer. Linear Algebra Appl..
[31] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[32] T. Manteuffel,et al. Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .
[33] Albert,et al. Emergence of scaling in random networks , 1999, Science.
[34] D. Bartuschat. Algebraic Multigrid , 2007 .
[35] Udo R. Krieger,et al. Modeling and Analysis of Communication Systems Based on Computational Methods for Markov Chains , 1990, IEEE J. Sel. Areas Commun..
[36] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .
[37] Thomas A. Manteuffel,et al. Smoothed Aggregation Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..
[38] Cornelis W. Oosterlee,et al. KRYLOV SUBSPACE ACCELERATION FOR NONLINEAR MULTIGRID SCHEMES , 1997 .