Exploring Multi-Objective Optimization for Multi-Label Classifier Ensembles

Multi-label classification deals with the task of predicting multiple class labels for a given sample. Several performance metrics are designed in the literature to measure the quality of any multi-label classification technique. In general existing multi-label classification approaches focus on optimizing only a single performance measure. The current work builds on the hypothesis that a weighted ensemble of multiple multi-label classifiers will lead to obtain improved results. The appropriate weight combinations for combining the outputs of multiple classifiers can be selected after simultaneously optimizing different multi-label classification metrics like micro F1, hamming loss, 0/1 loss, accuracy, etc. The problem is posed as a multi-objective optimization problem where a set of 13 conflicting objective functions are simultaneously optimized using the search capability of a multi-objective genetic algorithm based technique, namely NSGA-II. The weights of votes for a classifier for different class labels vary over a range quantifying the degrees of confidence of a classifier for different class labels. Several base classifiers are utilized for solving the problem of multi-objective multi-label classification. The effectiveness of the proposed multi-objective based multi-label classifier ensemble approach is shown for 10 data sets of varying complexities, and comparisons are reported for several existing techniques. Obtained experimental results clearly illustrate the efficacy of the proposed technique.

[1]  Eyke Hüllermeier,et al.  Multilabel classification via calibrated label ranking , 2008, Machine Learning.

[2]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[3]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.

[4]  Philip S. Yu,et al.  Multi-Objective Multi-Label Classification , 2012, SDM.

[5]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[6]  K. Bretonnel Cohen,et al.  A shared task involving multi-label classification of clinical free text , 2007, BioNLP@ACL.

[7]  Stefan Kramer,et al.  A Nonlinear Label Compression and Transformation Method for Multi-label Classification Using Autoencoders , 2016, PAKDD.

[8]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[9]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[10]  Milos Hauskrecht,et al.  A Generalized Mixture Framework for Multi-label Classification , 2015, SDM.

[11]  Jason Weston,et al.  A kernel method for multi-labelled classification , 2001, NIPS.

[12]  Josef Kittler,et al.  Multilabel classification using heterogeneous ensemble of multi-label classifiers , 2012, Pattern Recognit. Lett..

[13]  John Yen,et al.  Classifying text messages for the haiti earthquake , 2011, ISCRAM.

[14]  Saso Dzeroski,et al.  Decision trees for hierarchical multi-label classification , 2008, Machine Learning.

[15]  Geoff Holmes,et al.  MEKA: A Multi-label/Multi-target Extension to WEKA , 2016, J. Mach. Learn. Res..

[16]  S. Karsoliya,et al.  Approximating Number of Hidden layer neurons in Multiple Hidden Layer BPNN Architecture , 2012 .

[17]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[18]  Eyke Hüllermeier,et al.  Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains , 2010, ICML.

[19]  Juan José del Coz,et al.  Binary relevance efficacy for multilabel classification , 2012, Progress in Artificial Intelligence.

[20]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[21]  Yiannis Kompatsiaris,et al.  An Empirical Study of Multi-label Learning Methods for Video Annotation , 2009, 2009 Seventh International Workshop on Content-Based Multimedia Indexing.

[22]  Grigorios Tsoumakas,et al.  Effective and Efficient Multilabel Classification in Domains with Large Number of Labels , 2008 .

[23]  Min-Ling Zhang,et al.  Ml-rbf: RBF Neural Networks for Multi-Label Learning , 2009, Neural Processing Letters.

[24]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[25]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[26]  Donato Malerba,et al.  Machine Learning and Knowledge Discovery in Databases, Part III: European Conference, ECML PKDD 2010, Athens, Greece, September 5-9, 2011, ... / Lecture Notes in Artificial Intelligence) , 2011 .

[27]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[28]  Chris Buckley,et al.  OHSUMED: an interactive retrieval evaluation and new large test collection for research , 1994, SIGIR '94.

[29]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[30]  Stefan Kramer,et al.  Multi-label classification using boolean matrix decomposition , 2012, SAC '12.

[31]  Andrew McCallum,et al.  Collective multi-label classification , 2005, CIKM '05.

[32]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[33]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[34]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[35]  Stefan Kramer,et al.  A Hybrid Machine Learning and Knowledge Based Approach to Limit Combinatorial Explosion in Biodegradation Prediction , 2016, Computational Sustainability.

[36]  Grigorios Tsoumakas,et al.  Random K-labelsets for Multilabel Classification , 2022 .

[37]  Jesse Read,et al.  Scalable Multi-label Classification , 2010 .

[38]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[39]  Sunita Sarawagi,et al.  Discriminative Methods for Multi-labeled Classification , 2004, PAKDD.