A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures

Metallurgical operations at elevated temperatures, such as those that involve solidification and/or mechanical deformation, can be critically influenced by the thermal stresses and strains that result from expansion and contraction of the material as a function of temperature. With the increasing use of computer-based process models for these operations, there arises a greater need for quantitative data on the thermal expansion coefficient of the relevant alloy at the temperatures involved. After briefly reviewing some existing sources of data for this property, the various techniques for its measurement at elevated temperatures are then described. These include mechanical dilatometry, optical imaging and interference systems, x-ray diffraction methods and electrical pulse heating techniques. Finally the implications, for process modelling, of the available data and measurement techniques are discussed.

[1]  V. Solozhenko,et al.  Compression and thermal expansion of hexagonal graphite-like boron nitride up to 7 GPa and 1800 K , 1997 .

[2]  C S Vikram A proposal for a referenceless approach to measurements of the thermal expansion of solids , 1997 .

[3]  P. Fino,et al.  Thermal fatigue behaviour of a 2014/Al2O3-SiO2 (Saffil® fibers) composite processed by squeeze casting , 2000 .

[4]  O. Anderson,et al.  Differential laser-interferometer for thermal expansion measurements , 2000 .

[5]  Y. S. Touloukian THERMOPHYSICAL PROPERTIES OF HIGH TEMPERATURE SOLID MATERIALS. , 1967 .

[6]  S. An,et al.  Study on thermal expansion and thermal shock resistance of MgO-PSZ , 1999 .

[7]  H. Jäger,et al.  Thermophysical properties of liquid iron , 1994 .

[8]  K. Sommer,et al.  Density, Thermal Expansion and Compressibility of Mercury , 1994 .

[9]  R. K. Kirby,et al.  Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids , 1977 .

[10]  H. Petek,et al.  Lateral thermal expansion of Cu(110) surface studied with helium atom scattering , 1999 .

[11]  A. Volodin,et al.  Implementation and optimization of a scanning Joule expansion microscope for the study of small conducting gold wires , 2000 .

[12]  R. K. Kirby,et al.  Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys , 1975 .

[13]  T. Finke,et al.  Determination of thermal-expansion characteristics of metals using strain gages , 1978 .

[14]  H. Jäger,et al.  High-temperature, high-pressure thermophysical measurements on liquid zinc , 1996 .

[15]  Robert R. Reeber,et al.  The role of defects on thermophysical properties : thermal expansion of V, Nb, Ta, Mo and W , 1998 .

[16]  Peter S. Gaal,et al.  Thermal conductivity 24, Thermal expansion 12 : joint conferences October 26-39, 1997 Pittsburgh, Pennsylvania, USA , 1999 .

[17]  A. Cibrario,et al.  Scanning pyrometry with microsecond time resolution , 1985 .

[18]  S. Bennett,et al.  An absolute interferometric dilatometer , 1977 .

[19]  Yi Zhang,et al.  A Contactless CCD Dilatometer for Foil Materials , 1999 .

[20]  A. Majumdar,et al.  Nanoscale Temperature Distributions Measured by Scanning Joule Expansion Microscopy , 1998 .

[21]  J. Blumm,et al.  Measurement of the volumetric expansion and bulk density of metals in the solid and molten regions , 2000 .

[22]  A. Cezairliyan A High Speed Method of Measuring Thermal Expansion of Electrical Conductors , 1971 .

[23]  D. Thiessen,et al.  Erratum: A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials [Rev. Sci. Instrum. 67, 3175 (1996)] , 1997 .

[24]  S. Matthies,et al.  Diffractive determination of thermo-elastic single crystal constants using polycrystalline samples. I. Thermal expansion of γ-TiAl from 300 to 900K , 1999 .

[25]  H. Jäger,et al.  Investigations of thermophysical properties of liquid metals with a rapid resistive heating technique , 1993 .

[26]  J. Wang,et al.  Measurements of the thermal expansion coefficient of 1Cr18Ni9Ti stainless steel with a laser scanning microdisplacement detection technique , 1989 .

[27]  O. J. Løkberg,et al.  Interferometric measurements of high temperature objects by electronic speckle pattern interferometry. , 1985, Applied optics.

[28]  Paul R. Chalker,et al.  Measurement and calculation of the thermal expansion coefficient of diamond , 1997 .

[29]  H. Elsayed-Ali,et al.  Surface thermal expansion of Ge(111) , 1999 .

[30]  D. Thiessen,et al.  A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials , 1996 .

[31]  Naofumi Yamada,et al.  Ultra-precise thermal expansion measurements of ceramic and steel gauge blocks with an interferometric dilatometer , 2000 .

[32]  Lo Yu-Lung,et al.  Measurement of thermal expansion coefficients using an in-fibre Bragg-grating sensor , 1998 .

[33]  R. Brandt,et al.  Problems of data input into a data base for thermophysical properties , 1989 .

[34]  MW Poore,et al.  Measuring the Thermal Expansion of Solids with Strain Gages , 1978 .

[35]  Johannes Suska,et al.  DESIGN NOTE: An interferometric device for precise thermal expansion measurements on bar-shaped materials , 1999 .

[36]  Nobu Kuzuu,et al.  Thermal expansion of vitreous silica: Correspondence between dilatation curve and phase transitions in crystalline silica , 1997 .

[37]  J. N. Fox Measurement of thermal expansion coefficients using a strain gauge , 1990 .

[38]  M. Halvarsson,et al.  Determination of the thermal expansion of κ-Al2O3 by high temperature XRD , 1995 .

[39]  J. Valentich A vitreous silica tube dilatometer for the measurement of thermal expansion of solids from-195 to 1000° C , 1979 .

[40]  Andrew B Lewis,et al.  Measurement of length, surface form and thermal expansion coefficient of length bars up to 1.5 m using multiple-wavelength phase-stepping interferometry. , 1994 .

[41]  Y. S. Touloukian Thermal Expansion: Metallic Elements and Alloys , 1975 .

[42]  A. Majumdar,et al.  Scanning Joule expansion microscopy at nanometer scales , 1998 .

[43]  Rafael A. Escalona Z.,et al.  Frequency-modulation continuous-wave (FMCW) interferometry for thermal-expansion coefficient measurements , 1996, Other Conferences.

[44]  R. Morrell,et al.  Dilatometric measurement of melting behaviour of metal alloys. , 1998 .

[45]  B. Yates,et al.  Thermal expansion at elevated temperatures IV. Carbon-fibre composites , 1973 .

[46]  C. P. Kempter,et al.  Precise Temperature Measurement in Debye‐Scherrer Specimens at Elevated Temperatures , 1965 .

[47]  W. Fang,et al.  Determining thermal expansion coefficients of thin films using micromachined cantilevers , 1999 .

[48]  A. Majumdar,et al.  Thermal Expansion and Temperature Measurement in a Microscopic Scale by Using the Atomic Force Microscope , 1999 .

[49]  Michael F. Ashby,et al.  The materials selector , 1997 .

[50]  W. Schmitz,et al.  Thermal Expansion of SrF2 at Elevated Temperatures , 1986 .

[51]  J. Leendertz,et al.  Interferometric displacement measurement on scattering surfaces utilizing speckle effect , 1970 .

[52]  S.-S. Jarng,et al.  Measurement of thermal expansion coefficients by electronic speckle pattern interferometry at high temperature , 1997 .

[53]  G. Langelaan,et al.  Thermal expansion measurement of pure aluminum using a very low thermal expansion heating stage for x-ray diffraction experiments , 1999 .

[54]  Hans Adolf Friedrichs,et al.  Processing and editing of kinetic data of substances for the data and program base system Kindas , 1995 .

[55]  J. Güdde,et al.  Surface thermal expansion of metal under femtosecond laser irradiation , 1997 .

[56]  H. Rafla-Yuan,et al.  Noncontact method for measuring coefficient of linear thermal expansion of thin films , 1998 .

[57]  J. Blumm,et al.  Measurement of the thermophysical properties of an aluminium-silicon casting alloy in the solid and molten regions , 1998 .

[58]  Tomoyuki Kakeshita,et al.  Influence of thermal annealing on the martensitic transitions in Ni–Ti shape memory alloys , 1999 .