Magneto-transport and Shubnikov-de Haas oscillations in the layered ternary telluride topological semimetal candidate Ta3SiTe6

Topological semimetals characterize a unique class of quantum materials hosting Dirac/Weyl fermions. The important features of topological fermions can be exhibited by quantum oscillations. Here, we report the magnetoresistance and Shubnikov-de Haas (SdH) quantum oscillation of longitudinal resistance in the single crystal of topological semimetal candidate Ta3SiTe6 with a magnetic field up to 38 T. The periodic amplitude of the oscillations shows related information about the Fermi surface. The fast Fourier transformation spectra represent a single oscillatory frequency. The analysis of the oscillations shows the Fermi pocket with a cross sectional area of 0.13 A−2. Combining magneto-transport measurements and the first-principles calculation, we find that these oscillations come from the hole pocket. Hall resistivity and the SdH oscillations recommend that Ta3SiTe6 is a hole dominated system.Topological semimetals characterize a unique class of quantum materials hosting Dirac/Weyl fermions. The important features of topological fermions can be exhibited by quantum oscillations. Here, we report the magnetoresistance and Shubnikov-de Haas (SdH) quantum oscillation of longitudinal resistance in the single crystal of topological semimetal candidate Ta3SiTe6 with a magnetic field up to 38 T. The periodic amplitude of the oscillations shows related information about the Fermi surface. The fast Fourier transformation spectra represent a single oscillatory frequency. The analysis of the oscillations shows the Fermi pocket with a cross sectional area of 0.13 A−2. Combining magneto-transport measurements and the first-principles calculation, we find that these oscillations come from the hole pocket. Hall resistivity and the SdH oscillations recommend that Ta3SiTe6 is a hole dominated system.

[1]  Philip D. Plowright Front , 2019, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[2]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[3]  Su-Yang Xu,et al.  Quasiparticle interference and nonsymmorphic effect on a floating band surface state of ZrSiSe , 2018, Nature Communications.

[4]  Wenshuai Gao,et al.  Magnetoresistance and Shubnikov–de Haas oscillations in layered Nb3SiTe6 thin flakes , 2018, Physical Review B.

[5]  Yugui Yao,et al.  Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line, and Dirac point in bulk and monolayer X 3 SiTe 6 ( X = Ta, Nb) , 2017, 1710.08376.

[6]  Ling Lu,et al.  Experimental discovery of nodal chains , 2017, 1706.05500.

[7]  X. Dai,et al.  Topological nodal line semimetals predicted from first-principles calculations , 2017 .

[8]  M. Sigrist,et al.  Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems , 2017, 1705.07126.

[9]  Y. Liu,et al.  Hourglass Dirac chain metal in rhenium dioxide , 2017, Nature Communications.

[10]  Su-Yang Xu,et al.  Discovery of Lorentz-violating type II Weyl fermions in LaAlGe , 2017, Science Advances.

[11]  L. Balents,et al.  Correlation effects and quantum oscillations in topological nodal-loop semimetals , 2017 .

[12]  R. Nandkishore,et al.  Topological surface superconductivity in doped Weyl loop materials , 2016, 1610.06930.

[13]  A. Burkov Topological semimetals. , 2016, Nature materials.

[14]  Shengyuan A. Yang,et al.  Dirac and Weyl Materials: Fundamental Aspects and Some Spintronics Applications , 2016, 1609.06482.

[15]  X. Dai Weyl fermions go into orbit , 2016, Nature Physics.

[16]  A. Schnyder,et al.  Nonsymmorphic symmetry-required band crossings in topological semimetals , 2016, 1606.03698.

[17]  Z. J. Wang,et al.  Experimental Discovery of the First Nonsymmorphic Topological Insulator KHgSb , 2016, 1605.06824.

[18]  Quansheng Wu,et al.  Nodal-chain metals , 2016, Nature.

[19]  Hsin Lin,et al.  Colloquium : Topological band theory , 2016, 1603.03576.

[20]  Zhijun Wang,et al.  Hourglass fermions , 2016, Nature.

[21]  H. Weng,et al.  Node-surface and node-line fermions from nonsymmorphic lattice symmetries , 2016, 1601.01440.

[22]  S. Zhang,et al.  Towards three-dimensional Weyl-surface semimetals in graphene networks. , 2016, Nanoscale.

[23]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[24]  Heng Ji,et al.  Enhanced electron coherence in atomically thin Nb3SiTe6 , 2015, Nature Physics.

[25]  C. Kane,et al.  Dirac Semimetals in Two Dimensions. , 2015, Physical review letters.

[26]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[27]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[28]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[29]  B. Uchoa,et al.  Line of Dirac Nodes in Hyperhoneycomb Lattices. , 2014, Physical review letters.

[30]  Bohm-Jung Yang,et al.  Classification of stable three-dimensional Dirac semimetals with nontrivial topology , 2014, Nature Communications.

[31]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[32]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[33]  Zhongyuan Liu,et al.  Large Linear Magnetoresistance and Shubnikov-de Hass Oscillations in Single Crystals of YPdBi Heusler Topological Insulators , 2013, Scientific Reports.

[34]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[35]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[36]  Zhenghan Wang,et al.  Topological classification and stability of Fermi surfaces. , 2012, Physical review letters.

[37]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[38]  Tian Shen,et al.  Quantized Hall effect and Shubnikov-de Haas oscillations in highly doped Bi2Se3: evidence for layered transport of bulk carriers. , 2012, Physical review letters.

[39]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[40]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical review letters.

[41]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[42]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[43]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[44]  G. Volovik,et al.  Flat bands in topological media , 2010, 1012.0905.

[45]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[46]  S. Murakami Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase , 2007, 0710.0930.

[47]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[48]  D. Koelling,et al.  A technique for relativistic spin-polarised calculations , 1977 .

[49]  L. Esaki,et al.  Shubnikov—de Haas Oscillations in a Semiconductor Superlattice , 1977 .