Polyacrolein containing microspheres: Synthesis, properties and possible medical applications

Abstract Polymeric microspheres are used in medical diagnostics, therapy, and as supports for enzymes and other proteins in biotechnology. These particles have also found application in fundamental studies in the life-sciences as useful tools for separation of the living cells and subcellular fragments. This article presents comprehensive information on polyacrolein containing microspheres suitable for medical applications. Various synthetic procedures (radical, anionic, and red-ox polymerizations) are described, leading to polyacrolein microspheres, microspheres made of polyacrolein and other polymers, and copolymer microspheres containing polyacrolein segments. These particles can be obtained in a range of diameters from ca . 50 nm to a few micrometers, often with very narrow diameter distributions. Depending on the particular synthetic routes, it is possible to obtain microspheres with a uniform structures, core-shell, and raspberry morphologies. In this review, methods used for the characterization of the chemical structure of the surface layer of microspheres, in particular, methods used for determination of reactive (aldehyde) groups are also discussed. Results of studies on the immobilization of proteins onto polyacrolein containing microspheres, including relationships between the mode of protein binding (covalent immobilization and physical adsorption) and the fraction of polyacrolein in the surface layer of microspheres are reviewed. Methods allowing one to obtain protein-microsphere systems in which the attached proteins retain a substantial part of their biological activity are described. Polyacrolein containing microspheres, after attachment of selected antibodies, can be used as reagents in diagnostic tests. There are examples of using these particles for the fabrication of new materials for hemoperfusion columns and for the formation of two-dimensional particle assemblies on surfaces of polyethylene, quartz, and glass, which are potentially useful for the fabrication of biosensors.

[1]  M. Takahashi,et al.  Production of submicron-size monodisperse polymer particles having aldehyde groups by seeded aldol condensation polymerization , 1993 .

[2]  E. Sudoł,et al.  Polymer latexes: Preparation, characterization, and applications , 1992 .

[3]  G. B. Pierce,et al.  ENZYME-LABELED ANTIBODIES: PREPARATION AND APPLICATION FOR THE LOCALIZATION OF ANTIGENS , 1966, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[4]  Von F. A. Henglein,et al.  Die polymerisation und pfropf-mischpolymerisation des acroleins unter dem einfluß von Co - 60 - gamma - strahlen. Polymere acroleine. 14. Mitteilung , 1959 .

[5]  S. Margel Characterization and chemistry of polyaldehyde microspheres , 1984 .

[6]  Marco Mascini,et al.  Uses of immobilized biological compounds , 1993 .

[7]  D C Carter,et al.  Structure of human serum albumin. , 1990, Science.

[8]  J. Pascault,et al.  Polymérisation anionique de l'acroléine, 3. Analyse des microstructures par 1H NMR et 13C NMR et mécanisme de polymérisation† , 1981 .

[9]  E. Ryder,et al.  Polymerization of acrolein by redox initiation , 1965 .

[10]  W. Kern,et al.  Die radikalinduzierte polymerisation von acrolein und α-methylacrolein in dimethylformamid. Polymere acroleine. 22. Mitt.1 , 1962 .

[11]  Von Rolf C. Schulz,et al.  Über die ionische Polymerisation von Acrolein und die Struktur der Polymerisate. Polymere Acroleine. 27. Mitt. , 1963 .

[12]  C. Pichot,et al.  Synthesis and characterization of cationic latex particles bearing sulfhydryl groups and their use in the immobilization of Fab antibody fragments (1) , 1994 .

[13]  D. Carter,et al.  Atomic structure and chemistry of human serum albumin , 1992, Nature.

[14]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[15]  I. Lakatos,et al.  Colloids Surfaces A: Physicochem , 1998 .

[16]  S. Słomkowski,et al.  The direct determination of protein concentration for proteins immobilized on polystyrene microspheres. , 1991, Journal of biomaterials science. Polymer edition.

[17]  P. Wojtaszczyk,et al.  A Paradox Resolved: Apparently Identical Radial Distribution Functions, Different Density Variances , 1995 .

[18]  M. Delamar,et al.  Adsorption of aminopropyltriethoxy silane on quartz: an XPS and contact angle measurements study , 1996 .

[19]  F. H. Lohman Spectrophotometric Determination of Carbonyl Oxygen , 1958 .

[20]  S. Margel,et al.  Polyacrolein microspheres as a new tool in cell biology. , 1982, Journal of cell science.

[21]  B. Miksa,et al.  Adsorption and covalent immobilization of human serum albumin (HSA) and gamma globulins (gamma G) onto poly(styrene/acrolein) latexes with pyrene, dansyl, and 2,4-dinitrophenyl labels. , 1995, Journal of biomaterials science. Polymer edition.

[22]  M. Asano,et al.  Formation of monodisperse poly(1-methacryloxybenzotriazole) particles by radiation-induced dispersion polymerization , 1989 .

[23]  Ø. Olsvik,et al.  Preparation and application of new monosized polymer particles , 1992 .

[24]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[25]  J. Andrade,et al.  A TIRF titration study of 1-anilinonaphthalene-8-sulfonate binding to silica-adsorbed bovine serum albumin , 1989 .

[26]  K. Venkatarao,et al.  Peroxo salts as initiators of vinyl polymerization: Polymerization of acrolein initiated by potassium peroxodiphosphate , 1982 .

[27]  K. Schmitz Macro-ion Characterization: From Dilute Solutions to Complex Fluids , 1993 .

[28]  A. Rembaum,et al.  Polyacrolein microspheres: preparation and characteristics. , 1985, Methods in enzymology.

[29]  S. Margel,et al.  Immobilized polymeric microspheres : polyacrolein microspheres covalently bound in a monolayer structure onto glass surfaces , 1992 .

[30]  P. Piet,et al.  Preparation and co-catalytic properties of functionalized latices , 1991 .

[31]  Robert G. Gilbert,et al.  Emulsion polymerization : a mechanistic approach , 1995 .

[32]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[33]  W. Kern,et al.  Die Redox‐Polymerisation des Acroleins in wäßrigem Medium. Polymere acroleine. 6. Mitteilung , 1957 .

[34]  S. Słomkowski,et al.  Changes in Conformation of Human Serum Albumin (HSA) and Gamma Globulins (γG) upon Adsorption to Polystyrene and Poly(styrene/acrolein) Latexes: Studies by Fluorescence Spectroscopy , 1994 .

[35]  Kazukiyo Kobayashi,et al.  Opening mode of acrolein in cationic copolymerization with styrene , 1977 .

[36]  W. Dreyer,et al.  Functional polymeric microspheres based on 2-hydroxyethyl methacrylate for immunochemical studies. , 1976, Macromolecules.

[37]  P. Nakane,et al.  PEROXIDASE-LABELED ANTIBODY A NEW METHOD OF CONJUGATION , 1974, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[38]  N. Turro,et al.  Fluorescence Probes for Aqueous Solutions of Nonionic Micelles , 1985 .

[39]  H. Shirahama,et al.  Surface characterization of styrene/2‐hydroxyethyl methacrylate copolymer latex , 1984 .

[40]  J. Golé,et al.  Caractère séquencé des polyacroléines préparées par voie anionique , 1973 .

[41]  R. E. Lenga,et al.  The Sigma-Aldrich library of regulatory and safety data , 1993 .

[42]  M. Labib,et al.  The conductometric titration of latices , 1980 .

[43]  Finlay MacRitchie,et al.  Protein adsorption at solid-liquid interfaces: Reversibility and conformation aspects , 1986 .

[44]  Statistical properties of surfaces covered by deposited particles , 1995 .

[45]  M. Takahashi,et al.  Production of submicron-size monodisperse polymer particles having aldehyde groups by the seeded aldol condensation polymerization of glutaraldehyde (II) , 1994 .

[46]  W. Nyhan,et al.  Acute iron poisoning in children. , 1976, The Western journal of medicine.

[47]  M. Wolszczak,et al.  Fluorescence of 1,3-Di(1-pyrenyl)propane probe incorporated into human serum albumin protein enforced conformations of the probe , 1997 .

[48]  T. Basinska,et al.  Attachment of horseradish peroxidase (HRP) onto the poly(styrene/acrolein) latexes and onto their derivatives with amino groups on the surface; activity of immobilized enzyme , 1995 .

[49]  S. M. Birnbaum,et al.  Effect of pH on the adsorption of immunoglobulin G on anionic poly(vinyltoluene) model latex particles , 1981 .

[50]  V. Bosnes,et al.  DEPLETION OF T LYMPHOCYTES FROM HUMAN BONE MARROW: Use of Magnetic Monosized Polymer Microspheres Coated with T‐Lymphocyte‐Specific Monoclonal Antibodies , 1987, Transplantation.

[51]  Y. Yamamoto,et al.  XPS analysis (ESCA) of the surface composition of poly(styrene/2-hydroxyethyl methacrylate) microspheres produced by emulsifier-free emulsion polymerization , 1989 .

[52]  H. Shirahama,et al.  Participation of electrolyte cations in albumin adsorption onto negatively charged polymer latices , 1989 .

[53]  D. Brooks,et al.  Analysis of Surface Aldehyde Functions on Surfactant-Free Polystyrene/Polyacrolein Latex , 1996 .

[54]  S. Słomkowski,et al.  Polypyrrole core/polyacrolein shell latex for protein immobilization , 1995 .

[55]  Kinam Park,et al.  Hydrogels and Biodegradable Polymers for Bioapplications , 1996 .

[56]  S. Słomkowski,et al.  Atomic force microscopy of human serum albumin (HSA) on poly(styrene/acrolein) microspheres , 1996 .

[57]  S. Słomkowski,et al.  Synthesis and Characterization of Polystyrene Core/Polyacrolein Shell Latexes , 1993 .

[58]  W. Dreyer,et al.  New immunolatex spheres: visual markers of antigens on lymphocytes for scanning electron microscopy , 1975, The Journal of cell biology.

[59]  S. Margel,et al.  Iron detoxification by haemoperfusion through deferoxamine-conjugated agarose-polyacrolein microsphere beads. , 1985, Biomaterials.

[60]  J. K. Thomas,et al.  Photochemical and photophysical studies of organized assemblies. Interaction of oils, long-chain alcohols, and surfactants forming microemulsions , 1980 .

[61]  M. S. Colvin,et al.  Acrolein and 2‐hydroxyethyl methacrylate copolymer microspheres , 1986 .

[62]  S. Słomkowski,et al.  Composite poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen. , 1995, Journal of biomaterials science. Polymer edition.

[63]  M. Seah,et al.  Practical Surface Analysis , 1992 .

[64]  S. Margel [13] Polyacrolein microspheres , 1985 .

[65]  F. Winnik PHOTOPHYSICS OF PREASSOCIATED PYRENES IN AQUEOUS POLYMER SOLUTIONS AND IN OTHER ORGANIZED MEDIA , 1993 .

[66]  A. L. German,et al.  SYNTHESIS, PURIFICATION AND CHARACTERIZATION OF CATIONIC LATICES PRODUCED BY THE EMULSION COPOLYMERIZATION OF STYRENE WITH 3-(METHACRYLAMIDINOPROPYL)TRIMETHYLAMMONIUM CHLORIDE , 1991 .

[67]  H. Kitano,et al.  Poly(styrene-co-acrolein) latex particles : copolymerization and characteristics , 1990 .

[68]  Von Rolf C. Schulz Polymere acroleine, I. Mitt. Untersuchungen über die polymerisation des acroleins. , 1955 .

[69]  W. Dreyer,et al.  Immunomicrospheres: reagents for cell labeling and separation. , 1980, Science.

[70]  M. Asano,et al.  Active functional copolymeric microspheres based on 1-methacryloxybenzotriazole and N-acryloxysuccinimide , 1990 .

[71]  D. Kowalczyk,et al.  Interaction of proteins with polymeric latexes , 1995 .

[72]  P. Lianos,et al.  ENVIRONMENTAL EFFECTS ON THE ELECTRONIC SPECTRAL PROPERTIES OF 1‐PYRENECARBOXALDEHYDE AND THEIR APPLICATION IN PROBING BIOLOGICAL STRUCTURES , 1980 .

[73]  H. Mark,et al.  Encyclopedia of polymer science and engineering , 1985 .