A sensitivity study of the Navier-Stokes-α model

Abstract We present a sensitivity study of the Navier Stokes- α model with respect to perturbations of the differential filter length α . The parameter-sensitivity is evaluated using the sensitivity equations method. Once formulated, the sensitivity equations are discretized and computed alongside the NS α model using the same finite elements in space, and Crank–Nicolson in time. We provide a complete stability analysis of the scheme, along with the results of several benchmark problems in both 2D and 3D. We further demonstrate a practical technique to utilize sensitivity calculations to determine the reliability of the NS α model in problem-specific settings. Lastly, we investigate the sensitivity and reliability of important functionals of the velocity and pressure solutions.

[1]  Jean-Luc Guermond,et al.  An interpretation of the Navier-Stokes-alpha model as a frame-indifferent Leray regularization , 2003 .

[2]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[3]  Lisa G. Davis,et al.  PARAMETER SENSITIVITY OF AN EDDY VISCOSITY MODEL: ANALYSIS, COMPUTATION AND ITS APPLICATION TO QUANTIFYING MODEL RELIABILITY , 2013 .

[4]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[5]  Maxim A. Olshanskii,et al.  ENABLING NUMERICAL ACCURACY OF NAVIER-STOKES-α THROUGH DECONVOLUTION AND ENHANCED STABILITY ∗ , 2011 .

[6]  Zhang,et al.  ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS , 2008 .

[7]  M. Vogelius An analysis of thep-version of the finite element method for nearly incompressible materials , 1983 .

[8]  E. Lunasin,et al.  A study of the Navier-Stokes-α model for two-dimensional turbulence , 2007 .

[9]  Darryl D. Holm,et al.  Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow , 1998, chao-dyn/9804026.

[10]  A. Hay,et al.  Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition , 2009, Journal of Fluid Mechanics.

[11]  Shangyou Zhang Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .

[12]  Tae-Yeon Kim,et al.  A deconvolution enhancement of the Navier-Stokes-αβ model , 2012, J. Comput. Phys..

[13]  L. Ridgway Scott,et al.  The Scott-Vogelius finite elements revisited , 2017, Math. Comput..

[14]  Michael Vogelius,et al.  Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .

[15]  Jeffrey M. Connors,et al.  Convergence analysis and computational testing of the finite element discretization of the Navier–Stokes alpha model , 2010 .

[16]  Jiajia Waters,et al.  Sensitivity analysis of the grad-div stabilization parameter in finite element simulations of incompressible flow , 2016, J. Num. Math..

[17]  Michael Vogelius,et al.  A right-inverse for the divergence operator in spaces of piecewise polynomials , 1983 .

[18]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[19]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[20]  Stephane Etienne,et al.  Application of a sensitivity equation method to turbulent flows with heat transfer , 2005 .

[21]  E. Fried,et al.  A numerical study of the Navier–Stokes-αβ model , 2011 .

[22]  Sébastien Deck,et al.  Large eddy simulation for aerodynamics: status and perspectives , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Mihai Anitescu,et al.  Sensitivities in Large Eddy Simulation and Improved Estimates of Turbulent Flow Functionals , 2007, SIAM J. Sci. Comput..

[24]  Faranak Pahlevani Sensitivity computations of eddy viscosity models with an application in drag computation , 2006 .

[25]  Shangyou Zhang Divergence-free finite elements on tetrahedral grids for k≥6 , 2011, Math. Comput..

[26]  L. Rebholz,et al.  ON THE HIGH ACCURACY NS-ALPHA-DECONVOLUTION TURBULENCE MODEL , 2010 .

[27]  M. Germano Differential filters for the large eddy numerical simulation of turbulent flows , 1986 .

[28]  W. Layton,et al.  Energy and helicity dissipation rates of the NS-alpha and NS-alpha-deconvolution models , 2010 .

[29]  Anders Logg,et al.  Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.

[30]  Monika Neda,et al.  Numerical study of the Navier–Stokes-α deconvolution model with pointwise mass conservation , 2018, Int. J. Comput. Math..

[31]  L. Rebholz,et al.  Global in Time Analysis and Sensitivity Analysis for the Reduced NS-α Model of Incompressible Flow , 2017 .

[32]  Leo G. Rebholz,et al.  Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations , 2010 .

[33]  Darryl D. Holm,et al.  The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.

[34]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[35]  C. Ross Ethier,et al.  Exact fully 3D Navier–Stokes solutions for benchmarking , 1994 .

[36]  Leo G. Rebholz,et al.  An enhanced‐physics‐based scheme for the NS‐α turbulence model , 2010 .

[37]  Max Gunzburger,et al.  SENSITIVITIES, ADJOINTS AND FLOW OPTIMIZATION , 1999 .