Genus Distribution of Graph Amalgamations: Pasting at Root-Vertices

We pursue the problem of counting the imbeddings of a graph in each of the orientable surfaces. We demonstrate how to achieve this for an iterated amalgamation of arbitrarily many copies of any graph whose genus distribution is known and further analyzed into a partitioned genus distribution. We introduce the concept of recombinant strands of face-boundary walks, and we develop the use of multiple production rules for deriving simultaneous recurrences. These two ideas are central to a broadbased approach to calculating genus distributions for graphs synthesized from smaller graphs.

[1]  Saul Stahl,et al.  Permutation-partition pairs. III. Embedding distributions of linear families of graphs , 1991, J. Comb. Theory, Ser. B.

[2]  Yanpei Liu,et al.  Orientable embedding genus distribution for certain types of graphs , 2008, J. Comb. Theory, Ser. B.

[3]  Jonathan L. Gross,et al.  Hierarchy for imbedding-distribution invariants of a graph , 1987, J. Graph Theory.

[4]  Tao Wang,et al.  The Total Embedding Distributions of Cacti and Necklaces , 2006 .

[5]  Jianer Chen,et al.  Overlap matrices and total imbedding distributions , 1994, Discret. Math..

[6]  Mike J. Grannell,et al.  A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs , 2008, J. Comb. Theory, Ser. B.

[7]  Bruce P. Mull Enumerating the orientable 2-cell imbeddings of complete bipartite graphs , 1999, J. Graph Theory.

[8]  Saul Stahl,et al.  Region distributions of graph embeddings and stirling numbers , 1990, Discret. Math..

[9]  Liu Yan-pei,et al.  Genus Distribution for Two Classes of Graphs , 2006 .

[10]  Jin Ho Kwak,et al.  Total embedding distributions for bouquets of circles , 2002, Discret. Math..

[11]  Charles H. C. Little,et al.  The Foundations of Topological Graph Theory , 1995 .

[12]  Mike J. Grannell,et al.  Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.

[13]  Marston D. E. Conder,et al.  Determination of all Regular Maps of Small Genus , 2001, J. Comb. Theory, Ser. B.

[14]  Esther Hunt Tesar Genus distribution of Ringel ladders , 2000, Discret. Math..

[15]  Lyle Andrew Mcgeoch,et al.  Algorithms for two graph problems: computing maximum-genus imbeddings and the two-server problem , 1987 .

[16]  Jonathan L. Gross,et al.  Journal of Graph Algorithms and Applications Genus Distributions of Cubic Outerplanar Graphs , 2022 .

[17]  Jozef Sirán,et al.  Triangular embeddings of complete graphs from graceful labellings of paths , 2007, J. Comb. Theory B.

[18]  Jonathan L. Gross,et al.  Genus distribution of graph amalgamations: self-pasting at root-vertices , 2011, Australas. J Comb..

[19]  Saul Stahl,et al.  Region distributions of some small diameter graphs , 1991, Discret. Math..

[20]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[21]  D. Jackson Counting cycles in permutations by group characters, with an application to a topological problem , 1987 .

[22]  Jonathan L. Gross,et al.  Genus distributions for bouquets of circles , 1989, J. Comb. Theory, Ser. B.

[23]  David M. Jackson,et al.  An atlas of the smaller maps in orientable and nonorientable surfaces , 2000 .

[24]  Vladimir P. Korzhik,et al.  Exponential Families of Non-isomorphic Non-triangular Orientable Genus Embeddings of Complete Graphs , 2002, J. Comb. Theory, Ser. B.

[25]  Terry I. Visentin,et al.  On the Genus Distribution of (p, q, n)-Dipoles , 2007, Electron. J. Comb..

[26]  D. Jackson,et al.  A character-theoretic approach to embeddings of rooted maps in an orientable surface of given genus , 1990 .

[27]  Jin Ho Kwak,et al.  Enumeration of graph embeddings , 1994, Discret. Math..

[28]  L. Beineke,et al.  Topics in Topological Graph Theory , 2009 .