Non-basaltic asteroidal magmatism during the earliest stages of solar system evolution: A view from Antarctic achondrites Graves Nunatak 06128 and 06129
暂无分享,去创建一个
B. Weiss | C. Herd | Z. Sharp | P. King | C. Neal | L. Borg | J. Geissman | J. Papike | C. Shearer | J. Gilmour | A. Gaffney | M. Wadhwa | P. Burger | V. Fernandes | J. Karner | S. Crowther | J. Shafer | L. Spivak-Birndorf | N. Atudorei
[1] M. Wadhwa,et al. 26Al–26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers , 2009 .
[2] J. Whitby,et al. Collisional modification of the acapulcoite/lodranite parent body revealed by the iodine‐xenon system in lodranites , 2009 .
[3] D. Kring,et al. 40Ar‐39Ar ages of H‐chondrite impact melt breccias , 2009 .
[4] T. Hiroi,et al. Searching for the Evolved Crust of Oxidized Asteroids , 2009 .
[5] L. Taylor,et al. Early formation of evolved asteroidal crust , 2009, Nature.
[6] A. Bouvier,et al. Synchronizing the Absolute and Relative Clocks: Pb-Pb and Al-Mg Systematics in CAIs from the Allende and NWA 2364 CV3 Chondrites , 2009 .
[7] D. Ebel,et al. Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals , 2008 .
[8] B. Weiss,et al. Letter. A unique glimpse into asteroidal melting processes in the early solar system from the Graves Nunatak 06128/06129 achondrites , 2008 .
[9] Y. Amelin. The U–Pb systematics of angrite Sahara 99555 , 2008 .
[10] J. Masarik,et al. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling , 2008 .
[11] Y. Amelin,et al. 26 Al- 26 Mg and 207 Pb- 206 Pb systematics of Allende CAIs: Canonical solar initial 26 Al/ 27 Al ratio reinstated , 2008 .
[12] J. Gilmour,et al. Testing an integrated chronology: I‐Xe analysis of enstatite meteorites and a eucrite , 2008 .
[13] J. Papike,et al. Olivine Diogenites and QUE 93148. Remnants of the HED Parent Body Mantle , 2008 .
[14] L. Taylor,et al. Petrogenesis of the Differentiated Achondrite GRA 06129: Trace Elements and Chronology , 2008 .
[15] R. Korotev,et al. Petrology, Geochemistry, and Likely Provenance of Unique Achondrite Graves Nunataks 06128 , 2008 .
[16] M. Bizzarro,et al. Chronology of the Solar System’s Oldest Solids , 2008 .
[17] Y. Amelin. U–Pb ages of angrites , 2008 .
[18] M. Wadhwa. Redox conditions on small bodies, the moon and mars , 2008 .
[19] C. Herd. Basalts as Probes of Planetary Interior Redox State , 2008 .
[20] M. Bizzarro,et al. Hafnium–tungsten chronometry of angrites and the earliest evolution of planetary objects , 2007 .
[21] S. Mojzsis,et al. Pu–Xe, U–Xe, U–Pb chronology and isotope systematics of ancient zircons from Western Australia , 2007 .
[22] R. T. Helz,et al. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle , 2007 .
[23] L. Wilson,et al. Fractional melting and smelting on the ureilite parent body , 2007 .
[24] John H. Jones,et al. Petrography and Origin of the Unique Achondrite GRA 06128 and 06129: Preliminary Results , 2007 .
[25] J. Papike,et al. Comparative planetary mineralogy: Pyroxene major- and minor-element chemistry and partitioning of vanadium between pyroxene and melt in planetary basalts , 2006 .
[26] C. Vérati,et al. Intercalibration of the Hb3gr 40Ar/39Ar dating standard , 2006 .
[27] M. Bizzarro,et al. Extremely Brief Formation Interval for Refractory Inclusions and Uniform Distribution of 26Al in the Early Solar System , 2006 .
[28] A. P. Douce,et al. Apatite as a probe of halogen and water fugacities in the terrestrial planets , 2006 .
[29] T. Kleine,et al. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects , 2006 .
[30] C. Vérati,et al. Intercalibration of the Hb3gr 40 Ar/ 39 Ar dating standard , 2006 .
[31] B. Jolliff,et al. New views of the Moon , 2006 .
[32] Harry Y. McSween,et al. Meteorites and the early solar system II , 2006 .
[33] Z. Sharp,et al. Principles of Stable Isotope Geochemistry , 2006 .
[34] Matthew E. Pritchard,et al. Thermal and Magmatic Evolution of the Moon , 2006 .
[35] T. Kleine,et al. Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites , 2005 .
[36] Y. Amelin,et al. U-Pb Age of the Acapulco Phosphate: Testing the Calibration of the I-Xe Chronometer , 2005 .
[37] Charles K. Shearer,et al. Early crustal building processes on the moon: Models for the petrogenesis of the magnesian suite , 2005 .
[38] R. Carlson,et al. Time Scales of Planetesimal Differentiation in the Early Solar System , 2005 .
[39] K. Keil,et al. Feldspathic clast populations in polymict ureilites: Stalking the missing basalts from the ureilite parent body , 2004 .
[40] Y. Ikeda,et al. Origin of ureilites inferred from a SIMS oxygen isotopic and trace element study of clasts in the Dar al Gani 319 polymict ureilite , 2004 .
[41] Tomoki Nakamura,et al. CO2 Laser-BrF5 Fluorination Technique for Analysis of Oxygen Three Isotopes of Rocks and Minerals , 2004 .
[42] D. Glavin,et al. Mn‐Cr isotope systematics of the D'Orbigny angrite , 2004 .
[43] C. Neal,et al. Compositional variability in lavas from the Ontong Java Plateau: results from basalt clasts within the volcaniclastic succession at Ocean Drilling Program Site 1184 , 2004, Geological Society, London, Special Publications.
[44] J. Mahoney,et al. Origin And Evolution of the Ontong Java Plateau , 2004 .
[45] L. Taylor,et al. Spinels and oxygen fugacity in olivine‐phyric and lherzolitic shergottites , 2003 .
[46] L. Schultz,et al. New noble gas data of primitive and differentiated achondrites including Northwest Africa 011 and Tafassasset , 2003 .
[47] H. Wiesmann,et al. Fossil 26Al and 53Mn in the Asuka 881394 eucrite: evidence of the earliest crust on asteroid 4 Vesta , 2003 .
[48] C. Shearer,et al. Olivine from planetary basalts: Chemical signatures that indicate planetary parentage and those that record igneous setting and process , 2003 .
[49] Y. Amelin,et al. Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions , 2002, Science.
[50] John H. Jones,et al. Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars , 2002 .
[51] C. Neal. Interior of the Moon: The presence of garnet in the primitive deep lunar mantle , 2001 .
[52] R. Jones,et al. Disequilibrium partial melting experiments on the Leedey L6 chondrite: Textural controls on melting processes , 2001 .
[53] Z. Sharp,et al. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals , 2001 .
[54] M. Prinz,et al. Magmatic inclusions and felsic clasts in the Dar al Gani 319 polymict ureilite , 2001 .
[55] M. Otsuki,et al. Mineralogy of Inclusions in the Campo Del Cielo and Mont Dieu Irons and Segregation of Partial Melts , 2001 .
[56] F. J. Kruger,et al. The Halogen Geochemistry of the Bushveld Complex, Republic of South Africa: Implications for Chalcophile Element Distribution in the Lower and Critical Zones , 2000 .
[57] R. Wieler,et al. Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed‐system stepped etching , 2000 .
[58] C. Floss. Complexities on the acapulcoite‐lodranite parent body: Evidence from trace element distributions in silicate minerals , 2000 .
[59] J. Bridges,et al. The iodine‐xenon system in clasts and chondrules from ordinary chondrites: Implications for early solar system chronology , 2000 .
[60] S. S. Russell,et al. Timescales of Accretion and Differentiation in the Early Solar System: the Meteoritic Evidence , 2000 .
[61] A. Boss,et al. Protostars and Planets VI , 2000 .
[62] O. Pravdivtseva,et al. VERIFICATION AND INTERPRETATION OF THE I-XE CHRONOMETER , 1999 .
[63] G. Lugmair,et al. Early solar system timescales according to 53Mn-53Cr systematics , 1998 .
[64] K. Keil,et al. A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .
[65] P. Renne,et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .
[66] G. Lugmair,et al. 53Mn-53Cr Systematics in Brachina: A Record of One of the Earliest Phases of Igneous Activity on an Asteroid , 1998 .
[67] Timothy J. McCoy,et al. Non-chondritic meteorites from asteroidal bodies , 1998 .
[68] Kevin Righter,et al. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites , 1997 .
[69] M. Stewart,et al. Stable Cl isotopes and origin of high-Cl magmas of the Stillwater Complex, Montana , 1997 .
[70] E. Jessberger,et al. The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers , 1997 .
[71] K. Keil,et al. PARTIAL MELTING AND MELT MIGRATION IN THE ACAPULCOITE-LODRANITE PARENT BODY , 1997 .
[72] R. Clayton,et al. Oxygen isotope studies of achondrites , 1996 .
[73] R. Clayton,et al. A New Brachinite and Petrogenesis of the Group , 1996 .
[74] M. Kohn,et al. UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating , 1995 .
[75] Z. Sharp. Oxygen isotope geochemistry of the Al 2 SiO 5 polymorphs , 1995 .
[76] D. Bogard. Impact ages of meteorites: A synthesis , 1995 .
[77] W. Brand,et al. Online Sulfur-Isotope Determination Using an Elemental Analyzer Coupled to a Mass Spectrometer , 1994 .
[78] L. Le,et al. Experimental partitioning of rare earth elements and strontium: Constraints on petrogenesis and redox conditions during crystallization of Antarctic angrite Lewis Cliff 86010 , 1994 .
[79] K. Marti,et al. I-Xe studies of the Acapulco meteorite: Absolute I-Xe ages of individual phosphate grains and the Bjurböle standard , 1994 .
[80] John H. Jones,et al. The Compositional Similarity Between Sioux County and Experimentally Produced Partial Melts of the Murchison Chondrite Favors a Partial Melting Origin for Primitive Eucrites , 1994 .
[81] J. Gilmour,et al. RELAX: An ultrasensitive, resonance ionization mass spectrometer for xenon , 1994 .
[82] R. Frankel,et al. Rock magnetic criteria for the detection of biogenic magnetite , 1993 .
[83] G. Lugmair,et al. 60Fe in eucrites , 1993 .
[84] G. J. Taylor,et al. Asteroid differentiation - Pyroclastic volcanism to magma oceans , 1993 .
[85] J. Gilmour,et al. Characteristics and applications of RELAX, an ultrasensitive resonance ionization mass spectrometer for xenon , 2005 .
[86] R. Clayton,et al. Brachinites: A New Primitive Achondrite Group , 1992 .
[87] Neal E. Blair. Geochimica et Cosmochimica Acta , 1992 .
[88] G. Wasserburg,et al. Samarium-neodymium evolution of meteorites , 1992 .
[89] M. Ghiorso,et al. Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas , 1991 .
[90] Mark S. Ghiorso,et al. Chromian spinels as petrogenetic indicators : thermodynamics and petrological applications , 1991 .
[91] D. Mittlefehldt,et al. Partial Melting of the Aliende (CV3) Meteorite: Implications for Origins of Basaltic Meteorites , 1991, Science.
[92] M. Ghiorso,et al. An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels , 1991 .
[93] M. Ghiorso,et al. An internally consistent model for the thermodynamic properties of Fe−Mg-titanomagnetite-aluminate spinels , 1991 .
[94] B. Wood. Oxygen barometry of spinel peridotites , 1991 .
[95] W. Lowrie. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties , 1990 .
[96] W. Hartmann,et al. Asteroids - The big picture , 1989 .
[97] N. Grevesse,et al. Abundances of the elements: Meteoritic and solar , 1989 .
[98] G. Droop,et al. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria , 1987, Mineralogical Magazine.
[99] Y. Chang,et al. The Fe−Ni−S system. I: A thermodynamic analysis of the phase equilibria and calculation of the phase diagram from 1173 to 1623 K , 1987 .
[100] C. Yapp,et al. Carbon in natural goethites , 1986 .
[101] M. Pedley,et al. Stable hydrogen isotopes in iron oxides—II. DH variations among natural goethites , 1985 .
[102] E. Takahashi. Melting of a Yamato L3 chondorite (Y-74191) up to 30 kbar , 1983 .
[103] S. Cisowski,et al. Interacting vs. non-interacting single domain behavior in natural and synthetic samples , 1981 .
[104] S. Niemeyer. I-Xe and 40Ar-39Ar dating of silicate from Weekeroo Station and Netschaëvo IIE iron meteorites , 1980 .
[105] B. Mysen,et al. Melting Experiments on a Yamato Chondrite , 1979 .
[106] R. Steiger,et al. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .
[107] V. Farmer. Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures , 1977 .
[108] H. W. Van der Marel,et al. Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures , 1976 .
[109] H. Krouse,et al. C13/C12 abundances in components of carbonaceous chondrites and terrestrial samples , 1970 .
[110] T. J. Murphy,et al. Absolute Isotopic Abundance Ratios and Atomic Weight of Magnesium. , 1966, Journal of Research of the National Bureau of Standards Section A Physics and Chemistry.
[111] Essam E. Hinnawi. Methods in chemical and mineral microscopy , 1966 .
[112] U. S. Grant. VOLCANIC ROCKS IN THE KEEWATIN OF MINNESOTA. , 1894, Science.