Non-basaltic asteroidal magmatism during the earliest stages of solar system evolution: A view from Antarctic achondrites Graves Nunatak 06128 and 06129

[1]  M. Wadhwa,et al.  26Al–26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers , 2009 .

[2]  J. Whitby,et al.  Collisional modification of the acapulcoite/lodranite parent body revealed by the iodine‐xenon system in lodranites , 2009 .

[3]  D. Kring,et al.  40Ar‐39Ar ages of H‐chondrite impact melt breccias , 2009 .

[4]  T. Hiroi,et al.  Searching for the Evolved Crust of Oxidized Asteroids , 2009 .

[5]  L. Taylor,et al.  Early formation of evolved asteroidal crust , 2009, Nature.

[6]  A. Bouvier,et al.  Synchronizing the Absolute and Relative Clocks: Pb-Pb and Al-Mg Systematics in CAIs from the Allende and NWA 2364 CV3 Chondrites , 2009 .

[7]  D. Ebel,et al.  Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals , 2008 .

[8]  B. Weiss,et al.  Letter. A unique glimpse into asteroidal melting processes in the early solar system from the Graves Nunatak 06128/06129 achondrites , 2008 .

[9]  Y. Amelin The U–Pb systematics of angrite Sahara 99555 , 2008 .

[10]  J. Masarik,et al.  Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling , 2008 .

[11]  Y. Amelin,et al.  26 Al- 26 Mg and 207 Pb- 206 Pb systematics of Allende CAIs: Canonical solar initial 26 Al/ 27 Al ratio reinstated , 2008 .

[12]  J. Gilmour,et al.  Testing an integrated chronology: I‐Xe analysis of enstatite meteorites and a eucrite , 2008 .

[13]  J. Papike,et al.  Olivine Diogenites and QUE 93148. Remnants of the HED Parent Body Mantle , 2008 .

[14]  L. Taylor,et al.  Petrogenesis of the Differentiated Achondrite GRA 06129: Trace Elements and Chronology , 2008 .

[15]  R. Korotev,et al.  Petrology, Geochemistry, and Likely Provenance of Unique Achondrite Graves Nunataks 06128 , 2008 .

[16]  M. Bizzarro,et al.  Chronology of the Solar System’s Oldest Solids , 2008 .

[17]  Y. Amelin U–Pb ages of angrites , 2008 .

[18]  M. Wadhwa Redox conditions on small bodies, the moon and mars , 2008 .

[19]  C. Herd Basalts as Probes of Planetary Interior Redox State , 2008 .

[20]  M. Bizzarro,et al.  Hafnium–tungsten chronometry of angrites and the earliest evolution of planetary objects , 2007 .

[21]  S. Mojzsis,et al.  Pu–Xe, U–Xe, U–Pb chronology and isotope systematics of ancient zircons from Western Australia , 2007 .

[22]  R. T. Helz,et al.  Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle , 2007 .

[23]  L. Wilson,et al.  Fractional melting and smelting on the ureilite parent body , 2007 .

[24]  John H. Jones,et al.  Petrography and Origin of the Unique Achondrite GRA 06128 and 06129: Preliminary Results , 2007 .

[25]  J. Papike,et al.  Comparative planetary mineralogy: Pyroxene major- and minor-element chemistry and partitioning of vanadium between pyroxene and melt in planetary basalts , 2006 .

[26]  C. Vérati,et al.  Intercalibration of the Hb3gr 40Ar/39Ar dating standard , 2006 .

[27]  M. Bizzarro,et al.  Extremely Brief Formation Interval for Refractory Inclusions and Uniform Distribution of 26Al in the Early Solar System , 2006 .

[28]  A. P. Douce,et al.  Apatite as a probe of halogen and water fugacities in the terrestrial planets , 2006 .

[29]  T. Kleine,et al.  Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects , 2006 .

[30]  C. Vérati,et al.  Intercalibration of the Hb3gr 40 Ar/ 39 Ar dating standard , 2006 .

[31]  B. Jolliff,et al.  New views of the Moon , 2006 .

[32]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[33]  Z. Sharp,et al.  Principles of Stable Isotope Geochemistry , 2006 .

[34]  Matthew E. Pritchard,et al.  Thermal and Magmatic Evolution of the Moon , 2006 .

[35]  T. Kleine,et al.  Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites , 2005 .

[36]  Y. Amelin,et al.  U-Pb Age of the Acapulco Phosphate: Testing the Calibration of the I-Xe Chronometer , 2005 .

[37]  Charles K. Shearer,et al.  Early crustal building processes on the moon: Models for the petrogenesis of the magnesian suite , 2005 .

[38]  R. Carlson,et al.  Time Scales of Planetesimal Differentiation in the Early Solar System , 2005 .

[39]  K. Keil,et al.  Feldspathic clast populations in polymict ureilites: Stalking the missing basalts from the ureilite parent body , 2004 .

[40]  Y. Ikeda,et al.  Origin of ureilites inferred from a SIMS oxygen isotopic and trace element study of clasts in the Dar al Gani 319 polymict ureilite , 2004 .

[41]  Tomoki Nakamura,et al.  CO2 Laser-BrF5 Fluorination Technique for Analysis of Oxygen Three Isotopes of Rocks and Minerals , 2004 .

[42]  D. Glavin,et al.  Mn‐Cr isotope systematics of the D'Orbigny angrite , 2004 .

[43]  C. Neal,et al.  Compositional variability in lavas from the Ontong Java Plateau: results from basalt clasts within the volcaniclastic succession at Ocean Drilling Program Site 1184 , 2004, Geological Society, London, Special Publications.

[44]  J. Mahoney,et al.  Origin And Evolution of the Ontong Java Plateau , 2004 .

[45]  L. Taylor,et al.  Spinels and oxygen fugacity in olivine‐phyric and lherzolitic shergottites , 2003 .

[46]  L. Schultz,et al.  New noble gas data of primitive and differentiated achondrites including Northwest Africa 011 and Tafassasset , 2003 .

[47]  H. Wiesmann,et al.  Fossil 26Al and 53Mn in the Asuka 881394 eucrite: evidence of the earliest crust on asteroid 4 Vesta , 2003 .

[48]  C. Shearer,et al.  Olivine from planetary basalts: Chemical signatures that indicate planetary parentage and those that record igneous setting and process , 2003 .

[49]  Y. Amelin,et al.  Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions , 2002, Science.

[50]  John H. Jones,et al.  Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars , 2002 .

[51]  C. Neal Interior of the Moon: The presence of garnet in the primitive deep lunar mantle , 2001 .

[52]  R. Jones,et al.  Disequilibrium partial melting experiments on the Leedey L6 chondrite: Textural controls on melting processes , 2001 .

[53]  Z. Sharp,et al.  A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals , 2001 .

[54]  M. Prinz,et al.  Magmatic inclusions and felsic clasts in the Dar al Gani 319 polymict ureilite , 2001 .

[55]  M. Otsuki,et al.  Mineralogy of Inclusions in the Campo Del Cielo and Mont Dieu Irons and Segregation of Partial Melts , 2001 .

[56]  F. J. Kruger,et al.  The Halogen Geochemistry of the Bushveld Complex, Republic of South Africa: Implications for Chalcophile Element Distribution in the Lower and Critical Zones , 2000 .

[57]  R. Wieler,et al.  Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed‐system stepped etching , 2000 .

[58]  C. Floss Complexities on the acapulcoite‐lodranite parent body: Evidence from trace element distributions in silicate minerals , 2000 .

[59]  J. Bridges,et al.  The iodine‐xenon system in clasts and chondrules from ordinary chondrites: Implications for early solar system chronology , 2000 .

[60]  S. S. Russell,et al.  Timescales of Accretion and Differentiation in the Early Solar System: the Meteoritic Evidence , 2000 .

[61]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[62]  O. Pravdivtseva,et al.  VERIFICATION AND INTERPRETATION OF THE I-XE CHRONOMETER , 1999 .

[63]  G. Lugmair,et al.  Early solar system timescales according to 53Mn-53Cr systematics , 1998 .

[64]  K. Keil,et al.  A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .

[65]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[66]  G. Lugmair,et al.  53Mn-53Cr Systematics in Brachina: A Record of One of the Earliest Phases of Igneous Activity on an Asteroid , 1998 .

[67]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[68]  Kevin Righter,et al.  A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites , 1997 .

[69]  M. Stewart,et al.  Stable Cl isotopes and origin of high-Cl magmas of the Stillwater Complex, Montana , 1997 .

[70]  E. Jessberger,et al.  The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers , 1997 .

[71]  K. Keil,et al.  PARTIAL MELTING AND MELT MIGRATION IN THE ACAPULCOITE-LODRANITE PARENT BODY , 1997 .

[72]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[73]  R. Clayton,et al.  A New Brachinite and Petrogenesis of the Group , 1996 .

[74]  M. Kohn,et al.  UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating , 1995 .

[75]  Z. Sharp Oxygen isotope geochemistry of the Al 2 SiO 5 polymorphs , 1995 .

[76]  D. Bogard Impact ages of meteorites: A synthesis , 1995 .

[77]  W. Brand,et al.  Online Sulfur-Isotope Determination Using an Elemental Analyzer Coupled to a Mass Spectrometer , 1994 .

[78]  L. Le,et al.  Experimental partitioning of rare earth elements and strontium: Constraints on petrogenesis and redox conditions during crystallization of Antarctic angrite Lewis Cliff 86010 , 1994 .

[79]  K. Marti,et al.  I-Xe studies of the Acapulco meteorite: Absolute I-Xe ages of individual phosphate grains and the Bjurböle standard , 1994 .

[80]  John H. Jones,et al.  The Compositional Similarity Between Sioux County and Experimentally Produced Partial Melts of the Murchison Chondrite Favors a Partial Melting Origin for Primitive Eucrites , 1994 .

[81]  J. Gilmour,et al.  RELAX: An ultrasensitive, resonance ionization mass spectrometer for xenon , 1994 .

[82]  R. Frankel,et al.  Rock magnetic criteria for the detection of biogenic magnetite , 1993 .

[83]  G. Lugmair,et al.  60Fe in eucrites , 1993 .

[84]  G. J. Taylor,et al.  Asteroid differentiation - Pyroclastic volcanism to magma oceans , 1993 .

[85]  J. Gilmour,et al.  Characteristics and applications of RELAX, an ultrasensitive resonance ionization mass spectrometer for xenon , 2005 .

[86]  R. Clayton,et al.  Brachinites: A New Primitive Achondrite Group , 1992 .

[87]  Neal E. Blair Geochimica et Cosmochimica Acta , 1992 .

[88]  G. Wasserburg,et al.  Samarium-neodymium evolution of meteorites , 1992 .

[89]  M. Ghiorso,et al.  Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas , 1991 .

[90]  Mark S. Ghiorso,et al.  Chromian spinels as petrogenetic indicators : thermodynamics and petrological applications , 1991 .

[91]  D. Mittlefehldt,et al.  Partial Melting of the Aliende (CV3) Meteorite: Implications for Origins of Basaltic Meteorites , 1991, Science.

[92]  M. Ghiorso,et al.  An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels , 1991 .

[93]  M. Ghiorso,et al.  An internally consistent model for the thermodynamic properties of Fe−Mg-titanomagnetite-aluminate spinels , 1991 .

[94]  B. Wood Oxygen barometry of spinel peridotites , 1991 .

[95]  W. Lowrie Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties , 1990 .

[96]  W. Hartmann,et al.  Asteroids - The big picture , 1989 .

[97]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[98]  G. Droop,et al.  A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria , 1987, Mineralogical Magazine.

[99]  Y. Chang,et al.  The Fe−Ni−S system. I: A thermodynamic analysis of the phase equilibria and calculation of the phase diagram from 1173 to 1623 K , 1987 .

[100]  C. Yapp,et al.  Carbon in natural goethites , 1986 .

[101]  M. Pedley,et al.  Stable hydrogen isotopes in iron oxides—II. DH variations among natural goethites , 1985 .

[102]  E. Takahashi Melting of a Yamato L3 chondorite (Y-74191) up to 30 kbar , 1983 .

[103]  S. Cisowski,et al.  Interacting vs. non-interacting single domain behavior in natural and synthetic samples , 1981 .

[104]  S. Niemeyer I-Xe and 40Ar-39Ar dating of silicate from Weekeroo Station and Netschaëvo IIE iron meteorites , 1980 .

[105]  B. Mysen,et al.  Melting Experiments on a Yamato Chondrite , 1979 .

[106]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[107]  V. Farmer Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures , 1977 .

[108]  H. W. Van der Marel,et al.  Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures , 1976 .

[109]  H. Krouse,et al.  C13/C12 abundances in components of carbonaceous chondrites and terrestrial samples , 1970 .

[110]  T. J. Murphy,et al.  Absolute Isotopic Abundance Ratios and Atomic Weight of Magnesium. , 1966, Journal of Research of the National Bureau of Standards Section A Physics and Chemistry.

[111]  Essam E. Hinnawi Methods in chemical and mineral microscopy , 1966 .

[112]  U. S. Grant VOLCANIC ROCKS IN THE KEEWATIN OF MINNESOTA. , 1894, Science.