A visual introduction to Riemannian curvatures and some discrete generalizations
暂无分享,去创建一个
[1] M. Émery,et al. Hypercontractivité de semi-groupes de diffusion , 1984 .
[2] Karl-Theodor Sturm,et al. Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .
[3] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[4] Y. Ollivier. A survey of Ricci curvature for metric spaces and Markov chains , 2010 .
[5] S. Chow,et al. Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph , 2011, Archive for Rational Mechanics and Analysis.
[6] Wilfrid S. Kendall,et al. Nonnegative ricci curvature and the brownian coupling property , 1986 .
[7] V. Climenhaga. Markov chains and mixing times , 2013 .
[8] Arcwise Isometries,et al. A Course in Metric Geometry , 2001 .
[9] Y. Ollivier. Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.
[10] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[11] J. Maas. Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.
[12] M. Berger. A Panoramic View of Riemannian Geometry , 2003 .
[13] Wang Fengyu. Application of coupling method to the first eigenvalue on manifold , 1995 .
[14] Ald'eric Joulin. Poisson-type deviation inequalities for curved continuous-time Markov chains , 2007 .
[15] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[16] Yann Ollivier,et al. A January 2005 invitation to random groups , 2005, Ensaios Matemáticos.
[17] M. Ledoux. The concentration of measure phenomenon , 2001 .
[18] Xiping Zhu,et al. Ricci Curvature on Alexandrov spaces and Rigidity Theorems , 2009, 0912.3190.
[19] Yann Ollivier,et al. A Curved Brunn-Minkowski Inequality on the Discrete Hypercube, Or: What Is the Ricci Curvature of the Discrete Hypercube? , 2010, SIAM J. Discret. Math..
[20] Martin E. Dyer,et al. Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[21] R. McCann,et al. Prekopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport , 2006 .
[22] R. Dobrushin,et al. Constructive Criterion for the Uniqueness of Gibbs Field , 1985 .
[23] Laurent Veysseire. Coarse Ricci curvature for continuous-time Markov processes , 2012, 1202.0420.
[24] Jeff Cheeger,et al. On the structure of spaces with Ricci curvature bounded below. II , 2000 .
[25] Karl-Theodor Sturm,et al. Heat flow on Finsler manifolds , 2008, 0808.1166.
[26] A. Mielke. Geodesic convexity of the relative entropy in reversible Markov chains , 2013 .
[27] A. Guillin,et al. Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.
[28] Erwan Hillion. On Prekopa-Leindler inequalities on metric-measure spaces , 2009, 0912.3593.
[29] C. Villani. Topics in Optimal Transportation , 2003 .
[30] A. Joulin. A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature , 2009, 0906.2280.
[31] Graham A. Niblo. METRIC SPACES OF NON‐POSITIVE CURVATURE (Grundlehren der Mathematischen Wissenschaften 319) , 2001 .
[32] R. McCann,et al. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .
[33] Chen Mu. Application of Coupling Method to the First Eigenvalue on Manifold , 1994 .
[34] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[35] Y. Ollivier. Ricci curvature of metric spaces , 2007 .
[36] J. Azéma,et al. Séminaire de Probabilités XIX 1983/84 , 1985 .
[37] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[38] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[39] Shin-ichi Ohta,et al. Gradient flows on Wasserstein spaces over compact Alexandrov spaces , 2009 .
[40] Jinghai Shao,et al. Wasserstein space over the Wiener space , 2010 .
[41] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[42] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[43] Arnaud Guillin,et al. Transportation-information inequalities for Markov processes , 2007, 0706.4193.
[44] Karl-Theodor Sturm,et al. Non-Contraction of Heat Flow on Minkowski Spaces , 2010, 1009.2312.
[45] Shin-ichi Ohta. On the measure contraction property of metric measure spaces , 2007 .
[46] Anton Thalmaier,et al. Horizontal Diffusion in C 1 Path Space , 2009, 0904.2762.
[47] V. V. Buldygin,et al. Brunn-Minkowski inequality , 2000 .
[48] Michel Bonnefont. A discrete version of the Brunn-Minkowski inequality and its stability@@@Une version discrète de l’inégalité de Brunn-Minkowski et sa stabilité , 2009 .
[49] Anton Petrunin,et al. Alexandrov meets Lott-Villani-Sturm , 2010, 1003.5948.
[50] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[51] Lucas Gerin,et al. Random sampling of lattice paths with constraints, via transportation , 2010, ArXiv.
[52] Karl-Theodor Sturm,et al. Mass transportation and rough curvature bounds for discrete spaces , 2009 .
[53] Laurent Veysseire. A harmonic mean bound for the spectral gap of the Laplacian on Riemannian manifolds , 2010 .
[54] R. L. Dobrushin,et al. Perturbation methods of the theory of Gibbsian fields , 1996 .
[55] Optimal Transport and Ricci Curvature for Metric- Measure Spaces , 2006, math/0610154.
[56] Laurent Veysseire. Improved spectral gap bounds on positively curved manifolds , 2011, 1105.6080.
[57] N. Juillet. Geometric Inequalities and Generalized Ricci Bounds in the Heisenberg Group , 2009 .
[58] Mu-Fa Chen,et al. From Markov Chains to Non-Equilibrium Particle Systems , 1992 .
[59] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[60] Kathrin Bacher. On Borell-Brascamp-Lieb Inequalities on Metric Measure Spaces , 2010 .
[61] Nicola Gigli,et al. Heat Flow on Alexandrov Spaces , 2010, 1008.1319.
[62] J. Maas,et al. Ricci Curvature of Finite Markov Chains via Convexity of the Entropy , 2011, 1111.2687.
[63] Y. Ollivier,et al. CURVATURE, CONCENTRATION AND ERROR ESTIMATES FOR MARKOV CHAIN MONTE CARLO , 2009, 0904.1312.
[64] C. Villani. Optimal Transport: Old and New , 2008 .
[65] Nicola Gigli,et al. On the heat flow on metric measure spaces: existence, uniqueness and stability , 2010 .
[66] R. Oliveira. On the convergence to equilibrium of Kac’s random walk on matrices , 2007, 0705.2253.
[67] Shin-Ichi Ohta,et al. Finsler interpolation inequalities , 2009 .
[68] L. Ambrosio,et al. Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.
[69] Karl-Theodor Sturm,et al. Localization and Tensorization Properties of the Curvature-Dimension Condition for Metric Measure Spaces , 2010, 1003.2116.
[70] R. McCann,et al. Ricci flow, entropy and optimal transportation , 2010 .
[71] D. Wilson. Mixing times of lozenge tiling and card shuffling Markov chains , 2001, math/0102193.
[72] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[73] M. Gromov. Sign and geometric meaning of curvature , 1991 .
[74] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.