A visual introduction to Riemannian curvatures and some discrete generalizations

We try to provide a visual introduction to some objects used in Riemannian geometry: parallel transport, sectional curvature, Ricci curvature, Bianchi identities... We then explain some of the strategies used to define ana- logues of curvature in non-smooth or discrete spaces, beginning with Alexan- drov curvature and δ-hyperbolic spaces, and insisting on various notions of generalized Ricci curvature, which we briefly compare.

[1]  M. Émery,et al.  Hypercontractivité de semi-groupes de diffusion , 1984 .

[2]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[3]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[4]  Y. Ollivier A survey of Ricci curvature for metric spaces and Markov chains , 2010 .

[5]  S. Chow,et al.  Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph , 2011, Archive for Rational Mechanics and Analysis.

[6]  Wilfrid S. Kendall,et al.  Nonnegative ricci curvature and the brownian coupling property , 1986 .

[7]  V. Climenhaga Markov chains and mixing times , 2013 .

[8]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[9]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[10]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[11]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.

[12]  M. Berger A Panoramic View of Riemannian Geometry , 2003 .

[13]  Wang Fengyu Application of coupling method to the first eigenvalue on manifold , 1995 .

[14]  Ald'eric Joulin Poisson-type deviation inequalities for curved continuous-time Markov chains , 2007 .

[15]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[16]  Yann Ollivier,et al.  A January 2005 invitation to random groups , 2005, Ensaios Matemáticos.

[17]  M. Ledoux The concentration of measure phenomenon , 2001 .

[18]  Xiping Zhu,et al.  Ricci Curvature on Alexandrov spaces and Rigidity Theorems , 2009, 0912.3190.

[19]  Yann Ollivier,et al.  A Curved Brunn-Minkowski Inequality on the Discrete Hypercube, Or: What Is the Ricci Curvature of the Discrete Hypercube? , 2010, SIAM J. Discret. Math..

[20]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[21]  R. McCann,et al.  Prekopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport , 2006 .

[22]  R. Dobrushin,et al.  Constructive Criterion for the Uniqueness of Gibbs Field , 1985 .

[23]  Laurent Veysseire Coarse Ricci curvature for continuous-time Markov processes , 2012, 1202.0420.

[24]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[25]  Karl-Theodor Sturm,et al.  Heat flow on Finsler manifolds , 2008, 0808.1166.

[26]  A. Mielke Geodesic convexity of the relative entropy in reversible Markov chains , 2013 .

[27]  A. Guillin,et al.  Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.

[28]  Erwan Hillion On Prekopa-Leindler inequalities on metric-measure spaces , 2009, 0912.3593.

[29]  C. Villani Topics in Optimal Transportation , 2003 .

[30]  A. Joulin A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature , 2009, 0906.2280.

[31]  Graham A. Niblo METRIC SPACES OF NON‐POSITIVE CURVATURE (Grundlehren der Mathematischen Wissenschaften 319) , 2001 .

[32]  R. McCann,et al.  A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .

[33]  Chen Mu Application of Coupling Method to the First Eigenvalue on Manifold , 1994 .

[34]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[35]  Y. Ollivier Ricci curvature of metric spaces , 2007 .

[36]  J. Azéma,et al.  Séminaire de Probabilités XIX 1983/84 , 1985 .

[37]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[38]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[39]  Shin-ichi Ohta,et al.  Gradient flows on Wasserstein spaces over compact Alexandrov spaces , 2009 .

[40]  Jinghai Shao,et al.  Wasserstein space over the Wiener space , 2010 .

[41]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[42]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[43]  Arnaud Guillin,et al.  Transportation-information inequalities for Markov processes , 2007, 0706.4193.

[44]  Karl-Theodor Sturm,et al.  Non-Contraction of Heat Flow on Minkowski Spaces , 2010, 1009.2312.

[45]  Shin-ichi Ohta On the measure contraction property of metric measure spaces , 2007 .

[46]  Anton Thalmaier,et al.  Horizontal Diffusion in C 1 Path Space , 2009, 0904.2762.

[47]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[48]  Michel Bonnefont A discrete version of the Brunn-Minkowski inequality and its stability@@@Une version discrète de l’inégalité de Brunn-Minkowski et sa stabilité , 2009 .

[49]  Anton Petrunin,et al.  Alexandrov meets Lott-Villani-Sturm , 2010, 1003.5948.

[50]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[51]  Lucas Gerin,et al.  Random sampling of lattice paths with constraints, via transportation , 2010, ArXiv.

[52]  Karl-Theodor Sturm,et al.  Mass transportation and rough curvature bounds for discrete spaces , 2009 .

[53]  Laurent Veysseire A harmonic mean bound for the spectral gap of the Laplacian on Riemannian manifolds , 2010 .

[54]  R. L. Dobrushin,et al.  Perturbation methods of the theory of Gibbsian fields , 1996 .

[55]  Optimal Transport and Ricci Curvature for Metric- Measure Spaces , 2006, math/0610154.

[56]  Laurent Veysseire Improved spectral gap bounds on positively curved manifolds , 2011, 1105.6080.

[57]  N. Juillet Geometric Inequalities and Generalized Ricci Bounds in the Heisenberg Group , 2009 .

[58]  Mu-Fa Chen,et al.  From Markov Chains to Non-Equilibrium Particle Systems , 1992 .

[59]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[60]  Kathrin Bacher On Borell-Brascamp-Lieb Inequalities on Metric Measure Spaces , 2010 .

[61]  Nicola Gigli,et al.  Heat Flow on Alexandrov Spaces , 2010, 1008.1319.

[62]  J. Maas,et al.  Ricci Curvature of Finite Markov Chains via Convexity of the Entropy , 2011, 1111.2687.

[63]  Y. Ollivier,et al.  CURVATURE, CONCENTRATION AND ERROR ESTIMATES FOR MARKOV CHAIN MONTE CARLO , 2009, 0904.1312.

[64]  C. Villani Optimal Transport: Old and New , 2008 .

[65]  Nicola Gigli,et al.  On the heat flow on metric measure spaces: existence, uniqueness and stability , 2010 .

[66]  R. Oliveira On the convergence to equilibrium of Kac’s random walk on matrices , 2007, 0705.2253.

[67]  Shin-Ichi Ohta,et al.  Finsler interpolation inequalities , 2009 .

[68]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[69]  Karl-Theodor Sturm,et al.  Localization and Tensorization Properties of the Curvature-Dimension Condition for Metric Measure Spaces , 2010, 1003.2116.

[70]  R. McCann,et al.  Ricci flow, entropy and optimal transportation , 2010 .

[71]  D. Wilson Mixing times of lozenge tiling and card shuffling Markov chains , 2001, math/0102193.

[72]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[73]  M. Gromov Sign and geometric meaning of curvature , 1991 .

[74]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.