Intersection and union types in the λμ̃μ-calculus

The originalλμ̃μ of Curien and Herbelin has a system of simple types, based on sequent calculus, embodying a Curry-Howard correspondence with classical logic. We introduce and discuss three type assignment systems that are extensions of λμ̃μ with intersection and union types. The intrinsic symmetry in the λμ̃μ calculus leads to an essential use of both intersection and union types.

[1]  Mariangiola Dezani-Ciancaglini,et al.  Intersection and Union Types: Syntax and Semantics , 1995, Inf. Comput..

[2]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[3]  John C. Reynolds,et al.  Design of the programming language FORSYTHE , 1997 .

[4]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[5]  Luca Roversi,et al.  Intersection Logic , 2001, CSL.

[6]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[7]  Joe B. Wells,et al.  A calculus with polymorphic and polyvariant flow types , 2002, J. Funct. Program..

[8]  Alberto O. Mendelzon,et al.  Research Issues in Structured and Semistructured Database Programming , 1999, Lecture Notes in Computer Science.

[9]  C.-H. Luke Ong,et al.  A Curry-Howard foundation for functional computation with control , 1997, POPL '97.

[10]  Peter Buneman,et al.  Union Types for Semistructured Data , 1999, DBPL.

[11]  B. Pierce Programming with intersection types, union types, and polymorphism , 1991 .

[12]  G. Pottinger,et al.  A type assignment for the strongly normalizable |?-terms , 1980 .

[13]  Steffen van Bakel,et al.  Intersection Type Assignment Systems , 1995, Theor. Comput. Sci..

[14]  Frank Pfenning,et al.  Type Assignment for Intersections and Unions in Call-by-Value Languages , 2003, FoSSaCS.

[15]  Betti Venneri,et al.  Hyperformulae, Parallel Deductions and Intersection Types , 2001, BOTH.

[16]  Daniel J. Dougherty,et al.  Characterizing strong normalization in a language with control operators , 2004, PPDP '04.

[17]  Mariangiola Dezani-Ciancaglini,et al.  An extension of the basic functionality theory for the λ-calculus , 1980, Notre Dame J. Formal Log..

[18]  Jérôme Rocheteau Lambda -mu calcul et dualité, appel par nom et appel par valeur , 2002 .

[19]  Mariangiola Dezani-Ciancaglini,et al.  The "Relevance" of Intersection and Union Types , 1997, Notre Dame J. Formal Log..

[20]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[21]  Frank Pfenning,et al.  Tridirectional typechecking , 2004, POPL.

[22]  Patrick Sale Une Extension de la Theorie des Types en lambda-Calcul , 1978, ICALP.

[23]  Coppo Mario,et al.  A new type assignment for lambda-terms , 1978 .