Multirate sampled‐data stabilization for a class of low‐order lower‐triangular nonlinear systems

[1]  Dragan Nesic,et al.  Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation , 2005, Autom..

[2]  Françoise Lamnabhi-Lagarrigue,et al.  Stability analysis of some classes of input-affine nonlinear systems with aperiodic sampled-data control , 2016, Autom..

[3]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[4]  Valentin Tanasa,et al.  Backstepping Control Under Multi-Rate Sampling , 2016, IEEE Transactions on Automatic Control.

[5]  Daoyuan Zhang,et al.  Global output feedback sampled‐data stabilization for upper‐triangular nonlinear systems with improved maximum allowable transmission delay , 2017 .

[6]  Wei Lin,et al.  Robust regulation of a chain of power integrators perturbed by a lower‐triangular vector field , 2000 .

[7]  Dragan Nesic,et al.  Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model , 2006, Autom..

[8]  Salvatore Monaco,et al.  Sampled-Data Stabilization; A PBC Approach , 2011, IEEE Transactions on Automatic Control.

[9]  Zhengrong Xiang,et al.  Finite‐time stabilization of a class of switched stochastic nonlinear systems under arbitrary switching , 2016 .

[10]  Eduardo Sontag,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .

[11]  Dragan Nesic,et al.  Explicit Computation of the Sampling Period in Emulation of Controllers for Nonlinear Sampled-Data Systems , 2009, IEEE Transactions on Automatic Control.

[12]  Xi Chen,et al.  Robust Sampled-Data Output Synchronization of Nonlinear Heterogeneous Multi-Agents , 2017, IEEE Transactions on Automatic Control.

[13]  Wei Lin,et al.  A continuous feedback approach to global strong stabilization of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[14]  F Tiefensee,et al.  IDA-PBC under sampling for port-controlled hamiltonian systems , 2010, Proceedings of the 2010 American Control Conference.

[15]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[16]  Wei Lin,et al.  Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization , 2001 .

[17]  Romain Postoyan,et al.  Robust backstepping for the Euler approximate model of sampled-data strict-feedback systems , 2009, Autom..

[18]  B.D.O. Anderson,et al.  Controller design: moving from theory to practice , 1993, IEEE Control Systems.

[19]  Wei Lin,et al.  Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems , 2000 .

[20]  Wei Lin,et al.  Global Stabilization of a Class of Nonminimum-Phase Nonlinear Systems by Sampled-Data Output Feedback , 2016, IEEE Transactions on Automatic Control.

[21]  Chunjiang Qian,et al.  Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems , 2006, IEEE Transactions on Automatic Control.

[22]  Salvatore Monaco,et al.  From Chronological Calculus to Exponential Representations of Continuous and Discrete-Time Dynamics: A Lie-Algebraic Approach , 2007, IEEE Transactions on Automatic Control.

[23]  Xiaowei Zhao Control Theory Applied in Renewable Energy , 2017, Int. J. Control.

[24]  Salvatore Monaco,et al.  Lyapunov design under sampling for a synchronous machine , 2009, 2009 European Control Conference (ECC).