Facile synthesis of nano silver ferrite (AgFeO₂) modified with chitosan applied for biothiol separation.

[1]  H. Abdelhamid,et al.  Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4@SiO2). , 2014, Journal of materials chemistry. B.

[2]  H. Abdelhamid,et al.  Ultrasensitive, Rapid, and Selective Detection of Mercury Using Graphene Assisted Laser Desorption/Ionization Mass Spectrometry , 2014, Journal of The American Society for Mass Spectrometry.

[3]  H. Abdelhamid,et al.  Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis. , 2014, Talanta.

[4]  H. Abdelhamid,et al.  Polymer dots for quantifying the total hydrophobic pathogenic lysates in a single drop. , 2014, Colloids and surfaces. B, Biointerfaces.

[5]  H. Abdelhamid,et al.  Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. , 2013, Journal of materials chemistry. B.

[6]  H. Abdelhamid,et al.  Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(MALDI)-mass spectrometry. , 2013, Talanta.

[7]  Zhijie Shi,et al.  Excellent surface-enhanced Raman scattering (SERS) based on AgFeO2 semiconductor nanoparticles. , 2013, Nanoscale.

[8]  S. Musić,et al.  Formation of AgFeO2, α-FeOOH, and Ag2O from mixed Fe(NO3)3–AgNO3 solutions at high pH , 2013 .

[9]  H. Abdelhamid,et al.  Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. , 2013, Journal of materials chemistry. B.

[10]  H. Abdelhamid,et al.  Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. , 2013, Journal of materials chemistry. B.

[11]  S. Jha,et al.  Analytical detection of biological thiols in a microchip capillary channel. , 2013, Biosensors & bioelectronics.

[12]  D. Leong,et al.  Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. , 2013, Analytical chemistry.

[13]  E. Akkaya,et al.  Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BODIPY-based reagents. , 2013, Organic letters.

[14]  Chen-Ho Tung,et al.  BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. , 2012, Journal of the American Chemical Society.

[15]  H. Abdelhamid,et al.  Quantum dot applications endowing novelty to analytical proteomics , 2012, Proteomics.

[16]  S. Sharma,et al.  Influence of silver concentrations on structural and magnetic properties of Ag-Fe3O4 heterodimer nanoparticles. , 2012, Journal of nanoscience and nanotechnology.

[17]  X. Su,et al.  Highly sensitive and selective detection of biothiols using graphene oxide-based "molecular beacon"-like fluorescent probe. , 2012, Analytica chimica acta.

[18]  M. Hepel,et al.  Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular beacon. , 2012, Analytical chemistry.

[19]  X. Qu,et al.  Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. , 2012, Chemical communications.

[20]  Xiaogang Qu,et al.  Combination of Graphene Oxide and Thiol‐Activated DNA Metallization for Sensitive Fluorescence Turn‐On Detection of Cysteine and Their Use for Logic Gate Operations , 2011 .

[21]  R. Strongin,et al.  Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. , 2011, Angewandte Chemie.

[22]  X. Qu,et al.  Highly sensitive and selective detection of thiol-containing biomolecules using DNA-templated silver deposition. , 2011, Biosensors & bioelectronics.

[23]  Hyockman Kwon,et al.  Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression. , 2011, Chemical communications.

[24]  E. Wang,et al.  Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. , 2011, Biosensors & bioelectronics.

[25]  Maria Hepel,et al.  "Molecular beacon"-based fluorescent assay for selective detection of glutathione and cysteine. , 2011, Analytical chemistry.

[26]  David Baker,et al.  Quantitative reactivity profiling predicts functional cysteines in proteomes , 2010, Nature.

[27]  X. Qu,et al.  DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. , 2010, Analytical chemistry.

[28]  X. Qu,et al.  A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions. , 2010, Chemistry.

[29]  R. Singh,et al.  Synthesis and characterization of nano silver ferrite composite , 2010 .

[30]  Jiangshan Shen,et al.  Specific Hg(2+)-mediated perylene bisimide aggregation for highly sensitive detection of cysteine. , 2010, Chemical communications.

[31]  Ying Zhou,et al.  Fluorescent and colorimetric probes for detection of thiols. , 2010, Chemical Society reviews.

[32]  X. Zhong,et al.  Highly selective detection of glutathione using a quantum-dot-based OFF-ON fluorescent probe. , 2010, Chemical communications.

[33]  M. Stone,et al.  Thermodynamic properties and neutron diffraction studies of silver ferrite AgFeO2 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  S. Dong,et al.  Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. , 2009, Biosensors & bioelectronics.

[35]  Anilesh Kumar,et al.  Synthesis of colloidal silver iron oxide nanoparticles—study of their optical and magnetic behavior , 2009, Nanotechnology.

[36]  Nobel Tomar,et al.  Ultrasound assisted ambient temperature synthesis of ternary oxide AgMO2 (M ¼ Fe, Ga) , 2009 .

[37]  Long Yi,et al.  A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase. , 2009, Angewandte Chemie.

[38]  Shaojun Dong,et al.  Sensitive detection of cysteine based on fluorescent silver clusters. , 2009, Biosensors & bioelectronics.

[39]  Masaru Miyagi,et al.  Determination of pKa values of individual histidine residues in proteins using mass spectrometry. , 2008, Analytical chemistry.

[40]  T. Marks,et al.  Silver delafossite oxides. , 2008, Inorganic chemistry.

[41]  Yadong Li,et al.  Bifunctional Au-Fe3O4 nanoparticles for protein separation. , 2007, ACS nano.

[42]  B. Tang,et al.  A rhodamine-based fluorescent probe containing a Se-N bond for detecting thiols and its application in living cells. , 2007, Journal of the American Chemical Society.

[43]  Zhichuan J. Xu,et al.  Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. , 2007, Journal of the American Chemical Society.

[44]  H. Gu,et al.  Synthesis of Ag-Fe3O4 heterodimeric nanoparticles. , 2006, Journal of colloid and interface science.

[45]  David P. Cann,et al.  Crystal chemistry and electrical properties of the delafossite structure , 2006 .

[46]  T. Marks,et al.  Hydrothermal synthesis of delafossite-type oxides , 2006 .

[47]  Yu‐Fen Huang,et al.  Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. , 2006, Analytical chemistry.

[48]  L. Juillerat-Jeanneret,et al.  Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. , 2005, Biomaterials.

[49]  Jinwoo Cheon,et al.  Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[50]  Xuni Cao,et al.  Platinum particles-modified electrode for HPLC with pulsed amperometric detection of thiols in rat striatum. , 2004, Biomedical chromatography : BMC.

[51]  Mool C. Gupta,et al.  Au/Fe2O3 nanocatalysts for CO oxidation by a deposition–precipitation technique , 2004 .

[52]  Huan‐Tsung Chang,et al.  Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. , 2004, Analytical chemistry.

[53]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[54]  A. Curtis,et al.  TOPICAL REVIEW: Functionalisation of magnetic nanoparticles for applications in biomedicine , 2003 .

[55]  E. E. Carpenter,et al.  Oxidation of iron in iron/gold core/shell nanoparticles , 2002 .

[56]  Wei-Xing Xu,et al.  Spontaneous Dispersion of Ag onto the Fe3O4Surface , 1996 .

[57]  Peter Engel,et al.  Geometric Crystallography: An Axiomatic Introduction to Crystallography , 1986 .

[58]  D. B. Rogers,et al.  Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds , 1971 .

[59]  D. B. Rogers,et al.  Chemistry of noble metal oxides. II. Crystal structures of platinum cobalt dioxide, palladium cobalt dioxide, coppper iron dioxide, and silver iron dioxide , 1971 .

[60]  W. Croft,et al.  Crystallographic data for pure crystalline silver ferrite , 1964 .

[61]  H. Abdelhamid,et al.  Synthesis and antibacterial activities of graphene decorated with stannous dioxide , 2014 .

[62]  A. Marschilok,et al.  Synthesis and Electrochemistry of Silver Ferrite , 2011 .

[63]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[64]  Neil Burford,et al.  Definitive identification of cysteine and glutathione complexes of bismuth by mass spectrometry: assessing the biochemical fate of bismuth pharmaceutical agents. , 2003, Chemical communications.

[65]  Frank Caruso,et al.  Nanoengineering of particle surfaces. , 2001 .