Plasmon-Enhanced Metasurfaces for Controlling Optical Polarization

A method is proposed for controlling optical polarization using metasurfaces formed from arrays of planar chiral-patterned dielectric metamolecules with embedded achiral plasmonic nanostructures. At plasmon resonance, the subwavelength plasmonic nanoinclusions induce enhanced polarization of the surrounding dielectric, which gives rise to rotation of the polarization azimuth in the transmitted field. Full-wave electromagnetic analysis is used to investigate the optical response of various proposed media as a function of the symmetry and spacing of the metamolecules. The analysis shows that the metamolecules can be tailored to control the polarization state of light and produce frequency selective giant rotation of the polarization azimuth exceeding 105 deg/mm in the visible to near-infrared spectrum with relatively low loss. The proposed method opens up opportunities for the development of versatile ultrathin media that can manipulate optical polarization for novel micro-optical applications.

[1]  P. Biagioni,et al.  Near-field polarization shaping by a near-resonant plasmonic cross antenna , 2009 .

[2]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[3]  N I Zheludev,et al.  Asymmetric propagation of electromagnetic waves through a planar chiral structure. , 2006, Physical review letters.

[4]  N I Zheludev,et al.  Nanostructured metal film with asymmetric optical transmission. , 2008, Nano letters.

[5]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[6]  N. Zheludev,et al.  Asymmetric transmission: a generic property of two-dimensional periodic patterns , 2010, 1007.2620.

[7]  Takumi Sannomiya,et al.  High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. , 2012, ACS nano.

[8]  M. Wegener,et al.  Strong optical activity from twisted-cross photonic metamaterials. , 2009, Optics letters.

[9]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[10]  Erez Hasman,et al.  Observation of optical spin symmetry breaking in nanoapertures. , 2009, Nano letters.

[11]  D. Bagnall,et al.  Giant optical activity in dielectric planar metamaterials with two-dimensional chirality , 2006 .

[12]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[13]  Pablo G. Etchegoin,et al.  Erratum: “An analytic model for the optical properties of gold” [J. Chem. Phys. 125, 164705 (2006)] , 2007 .

[14]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[15]  Konstantins Jefimovs,et al.  Optical activity in chiral gold nanogratings , 2005 .

[16]  Konstantins Jefimovs,et al.  Giant optical activity in quasi-two-dimensional planar nanostructures. , 2005, Physical review letters.

[17]  Andrea Alù,et al.  Manipulating light polarization with ultrathin plasmonic metasurfaces , 2011 .

[18]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[19]  Kai Liu,et al.  Polarization Management of Terahertz Extraordinary Optical Transmission through Ultracompact L-Shaped Subwavelength Patterns on Metal Films , 2013, Plasmonics.

[20]  Federico Capasso,et al.  Effect of radiation damping on the spectral response of plasmonic components. , 2011, Optics express.

[21]  Konstantins Jefimovs,et al.  Optical activity in subwavelength-period arrays of chiral metallic particles , 2003 .

[22]  Free-space excitation of resonant cavities formed from cloaking metamaterial , 2008, 0810.4961.

[23]  Federico Capasso,et al.  Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy , 2012, Proceedings of the National Academy of Sciences.

[24]  Morten Willatzen,et al.  Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. , 2011, Optics letters.

[25]  M. Wegener,et al.  Twisted split-ring-resonator photonic metamaterial with huge optical activity. , 2010, Optics letters.

[26]  Andrea Alù,et al.  Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. , 2013, Nano letters.

[27]  Jari Turunen,et al.  Optical activity in planar chiral metamaterials: Theoretical study , 2007 .

[28]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[29]  Nikolay I. Zheludev,et al.  Metamaterial with negative index due to chirality , 2009 .

[30]  M. Kafesaki,et al.  Chiral metamaterials: simulations and experiments , 2009 .

[31]  N. Zheludev,et al.  Planar metamaterial with transmission and reflection that depend on the direction of incidence , 2008, 0812.0696.

[32]  Tal Ellenbogen,et al.  Chromatic plasmonic polarizers for active visible color filtering and polarimetry. , 2012, Nano letters.

[33]  Federico Capasso,et al.  Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  T. Verbiest,et al.  Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook , 2013, Advanced materials.

[35]  D. Tsai,et al.  Metamaterials: optical activity without chirality. , 2009, Physical review letters.