Implementation of Clifford gates in the Ising-anyon topological quantum computer
暂无分享,去创建一个
Reinhard F. Werner | Andre Ahlbrecht | Lachezar S. Georgiev | R. Werner | A. Ahlbrecht | L. Georgiev
[1] Frank Wilczek,et al. 2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states , 1996 .
[2] Ady Stern,et al. Anyons and the quantum Hall effect - a pedagogical review , 2007, 0711.4697.
[3] S. Simon,et al. Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.
[4] I. Todorov,et al. Two-dimensional conformal quantum field theory , 1989 .
[5] Gregory W. Moore,et al. Nonabelions in the fractional quantum Hall effect , 1991 .
[6] Zohar Nussinov,et al. Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems , 2007, 0709.2717.
[7] H. Briegel,et al. Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.
[8] A. Kitaev. Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.
[9] Scott Aaronson,et al. Improved Simulation of Stabilizer Circuits , 2004, ArXiv.
[10] L. Georgiev. Topologically protected gates for quantum computation with non-Abelian anyons in the Pfaffian quantum Hall state , 2006, cond-mat/0607125.
[11] Frank Wilczek,et al. Families from spinors , 1982 .
[12] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[13] D. Ivanov. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.
[14] L. Georgiev. The ν=5/2 quantum Hall state revisited: spontaneous breaking of the chiral fermion parity and phase transition between Abelian and non-Abelian statistics , 2001, hep-th/0108173.
[15] M. Freedman,et al. Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. , 2004, Physical review letters.
[16] Pierre Mathieu,et al. Conformal Field Theory , 1999 .
[17] Robert A. Wilson,et al. The finite simple groups , 2009 .
[18] P. Jorrand,et al. Group theory for quantum gates and quantum coherence , 2008, 0803.1911.
[19] F. A. Bais,et al. Quantum groups and non-Abelian braiding in quantum Hall systems , 2001 .
[20] L. Georgiev. Towards a universal set of topologically protected gates for quantum computation with Pfaffian qubits , 2006, hep-th/0611340.
[21] M. Fannes,et al. A statistical mechanics view on Kitaev's proposal for quantum memories , 2007, quant-ph/0702102.
[22] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[23] Non-Abelian braid statistics versus projective permutation statistics , 2002, hep-th/0201240.