Implementation of Clifford gates in the Ising-anyon topological quantum computer

We give a general proof for the existence and realizability of Clifford gates in the Ising topological quantum computer. We show that all quantum gates that can be implemented by braiding of Ising anyons are Clifford gates. We find that the braiding gates for two qubits exhaust the entire two-qubit Clifford group. Analyzing the structure of the Clifford group for $n\ensuremath{\ge}3$ qubits we prove that the image of the braid group is a nontrivial subgroup of the Clifford group so that not all Clifford gates could be implemented by braiding in the Ising topological quantum computation scheme. We also point out which Clifford gates cannot in general be realized by braiding.

[1]  Frank Wilczek,et al.  2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states , 1996 .

[2]  Ady Stern,et al.  Anyons and the quantum Hall effect - a pedagogical review , 2007, 0711.4697.

[3]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[4]  I. Todorov,et al.  Two-dimensional conformal quantum field theory , 1989 .

[5]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[6]  Zohar Nussinov,et al.  Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems , 2007, 0709.2717.

[7]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[8]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[9]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[10]  L. Georgiev Topologically protected gates for quantum computation with non-Abelian anyons in the Pfaffian quantum Hall state , 2006, cond-mat/0607125.

[11]  Frank Wilczek,et al.  Families from spinors , 1982 .

[12]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[13]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[14]  L. Georgiev The ν=5/2 quantum Hall state revisited: spontaneous breaking of the chiral fermion parity and phase transition between Abelian and non-Abelian statistics , 2001, hep-th/0108173.

[15]  M. Freedman,et al.  Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. , 2004, Physical review letters.

[16]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[17]  Robert A. Wilson,et al.  The finite simple groups , 2009 .

[18]  P. Jorrand,et al.  Group theory for quantum gates and quantum coherence , 2008, 0803.1911.

[19]  F. A. Bais,et al.  Quantum groups and non-Abelian braiding in quantum Hall systems , 2001 .

[20]  L. Georgiev Towards a universal set of topologically protected gates for quantum computation with Pfaffian qubits , 2006, hep-th/0611340.

[21]  M. Fannes,et al.  A statistical mechanics view on Kitaev's proposal for quantum memories , 2007, quant-ph/0702102.

[22]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[23]  Non-Abelian braid statistics versus projective permutation statistics , 2002, hep-th/0201240.