Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates
暂无分享,去创建一个
[1] P. Lu,et al. Epitaxial growth of RuO2 thin films by metal-organic chemical vapor deposition , 1999 .
[2] A. Battisti,et al. Examination of RuO2 single-crystal surfaces: charge storage mechanism in H2SO4 aqueous solution , 2002 .
[3] C. C. Chen,et al. The growth and characterization of well aligned RuO2 nanorods on sapphire substrates , 2004 .
[4] Nae-Lih Wu,et al. Composite Supercapacitor Containing Tin Oxide and Electroplated Ruthenium Oxide , 2003 .
[5] Yao-Lun Chen,et al. Preparation and characterization of RuO2 thin films from Ru(CO)2(tmhd)2 by metalorganic chemical vapor deposition , 2002 .
[6] W. O'grady,et al. Effect of Crystallographic Orientation of Single‐Crystal RuO2 Electrodes on the Hydrogen Adsorption Reactions , 1984 .
[7] Jim P. Zheng,et al. Characterization of RuO 2 xH 2O with various water contents , 2002 .
[8] R. Hoch,et al. High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .
[9] F. Béguin,et al. Carbon materials for the electrochemical storage of energy in capacitors , 2001 .
[10] Young Soo Yoon,et al. Thin Film Supercapacitors Using a Sputtered RuO2 Electrode , 2001 .
[11] D. Tsai,et al. Area-selective growth of ruthenium dioxide nanorods on LiNbO3(100) and Zn/Si substrates , 2004 .
[12] C. Lokhande,et al. Electrodeposited ruthenium oxide (RuO2) films for electrochemical supercapacitors , 2004 .
[13] G. Battaglin,et al. Microstructural characterization and electrochemical properties of RuO2 thin film electrodes prepared by reactive radio-frequency magnetron sputtering , 2004 .
[14] S. Trasatti,et al. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour , 1971 .
[15] Wendy G. Pell,et al. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices , 2002 .
[16] Chi-Chang Hu,et al. How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors , 2004 .
[17] A. Lewandowski. Electrochemical capacitors with polymer electrolytes based on ionic liquids , 2003 .
[18] Wendy G. Pell,et al. Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour , 2001 .
[19] Il-Hwan Kim,et al. Ruthenium Oxide Thin Film Electrodes for Supercapacitors , 2001 .
[20] M. Eizenberg,et al. Chemical Vapor Deposited RuO x Films Effect of Oxygen Flow Rate , 2002 .
[21] W. Yonggang,et al. Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites , 2004 .
[22] Debra R. Rolison,et al. Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage , 1999 .
[23] D. F. Evans,et al. Microstructure of ruthenium dioxide films grown on α–Al_2O3 (0001), α–Al_2O_3 ( $$1\overline 1 02$$ ), and SrTiO_3 (100) using reactive sputtering , 1997 .
[24] D. Scherson,et al. In Situ Ru K-Edge X-Ray Absorption Fine Structure Studies of Electroprecipitated Ruthenium Dioxide Films with Relevance to Supercapacitor Applications , 2000 .
[25] H. L. Park,et al. Cyclic voltammetry on RuO2 (100), (101), (001) and (110) “as-grown” single-crystal surfaces , 1983 .
[26] S. Milonjić,et al. The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol , 2003 .