The Tor Vergata Synoptic Solar Telescope (TSST): A robotic, compact facility for solar full disk imaging

By the continuous multi-line observation of the solar atmosphere, it is possible to infer the magnetic and dynamical status of the Sun. This activity is essential to identify the possible precursors of space weather events, such as flare or coronal mass ejections. We describe the design and assembly of TSST (Tor Vergata Synoptic Solar Telescope), a robotic synoptic telescope currently composed of two main full-disk instruments, a Hα telescope and a Potassium (KI D1) magneto-optical filter (MOF)-based telescope operating at 769.9 nm. TSST is designed to be later upgraded with a second MOF channel. This paper describes the TSST concepts and presents the first light observation carried out in February 2020. We show that TSST is a low-cost robotic facility able to achieve the necessary data for the study of precursors of space weather events (using the magnetic and velocity maps by the MOF telescope) and fast flare detection (by the Hα telescope) to support Space Weather investigation and services.

[1]  X. Bonnin,et al.  Automation of the Filament Tracking in the Framework of the HELIO Project , 2012, 1202.2072.

[2]  J J DIJKHUIS,et al.  An observation , 1928, The Journal of Laryngology & Otology.

[3]  Ermanno Pietropaolo,et al.  The Probabilistic Drag Based Model for ICME propagation , 2019 .

[4]  A. Cacciani,et al.  The magneto-optical filter , 1978 .

[5]  Rolf Schlichenmaier,et al.  Recent advancements in the EST project , 2018, Advances in Space Research.

[6]  Stuart M. Jefferies,et al.  Observed Local Dispersion Relations for Magnetoacoustic-gravity Waves in the Sun’s Atmosphere: Mapping the Acoustic Cutoff Frequency , 2019, The Astrophysical Journal.

[7]  Ermanno Pietropaolo,et al.  JP3D compression of solar data-cubes: Photospheric imaging and spectropolarimetry , 2017, 1705.06611.

[8]  Stuart M. Jefferies,et al.  Future instrumentation for solar physics: a double channel MOF imager on board ASI Space Mission ADAHELI , 2010 .

[9]  Eugene H. Avrett,et al.  Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun , 1981 .

[10]  V. Rizi,et al.  The Raman LIDAR for the pre-production phase of Cherenkov Telescope Array , 2019, EPJ Web of Conferences.

[11]  A. Veronig,et al.  Ground-based Observations of the Solar Sources of Space Weather , 2016 .

[12]  L. Biferale,et al.  Pair separation of magnetic elements in the quiet Sun , 2014, 1409.1010.

[13]  F. Berrilli,et al.  Data reduction pipeline for MOF-based synoptic telescopes , 2020, Journal of Space Weather and Space Climate.

[14]  J. Harvey,et al.  Helioseismology from the South Pole: Comparison of 1987 and 1981 Results , 1988 .

[15]  S. Jefferies,et al.  Chromospheric observations in the helium 1083NM line : a new instrument , 2005 .

[16]  Timothy Butterley,et al.  Characterising daytime atmospheric conditions on La Palma. , 2015 .

[17]  D. Del Moro,et al.  Optical design of the Tor vergata Synoptic Solar Telescope (TSST) , 2020 .

[18]  Arnold Hanslmeier,et al.  The source of the solar oscillations: Convective or magnetic? , 2001 .

[19]  M. Casolino,et al.  SWERTO: a Regional Space Weather Service , 2017, Proceedings of the International Astronomical Union.

[20]  Sijie Yu,et al.  SOLAR LIMB PROMINENCE CATCHER AND TRACKER (SLIPCAT): AN AUTOMATED SYSTEM AND ITS PRELIMINARY STATISTICAL RESULTS , 2010, 1004.4553.

[21]  Pietro N. Bernasconi,et al.  Advanced Automated Solar Filament Detection And Characterization Code: Description, Performance, And Results , 2005 .

[22]  Stuart M. Jefferies,et al.  Helioseismic Mapping of the Magnetic Canopy in the Solar Chromosphere , 2004 .

[23]  J. Aboudarham,et al.  Filament Recognition and Image Cleaning on Meudon Hα Spectroheliograms , 2005 .

[24]  Mats Carlsson,et al.  THE FORMATION OF THE Hα LINE IN THE SOLAR CHROMOSPHERE , 2012, 1202.1926.

[25]  Mark Rast,et al.  The Critical Science Plan for DKIST , 2019 .

[26]  Ermanno Pietropaolo,et al.  Introducing SWERTO: A regional space weather service , 2019 .

[27]  A. Benz,et al.  Flare Observations , 2016, Living Reviews in Solar Physics.

[28]  G. Severino,et al.  Planning magneto-optical filters for the study of magnetic oscillations of the Sun , 2010 .

[29]  Stuart M. Jefferies,et al.  ADAHELI+: exploring the fast, dynamic Sun in the x-ray, optical, and near-infrared , 2015 .

[30]  A. Cacciani,et al.  The magneto-optical filter , 1975 .

[31]  A. Warmuth,et al.  Full-disk magnetic oscillations in the solar photosphere , 2003 .

[32]  W. Taylor,et al.  Optical Design , 2020, Optical Engineering Science.

[33]  V. Greco,et al.  The ADAHELI solar mission: Investigating the structure of Sun's lower atmosphere , 2010 .

[34]  R. K. Ulrich,et al.  The Global Oscillation Network Group (GONG) Project , 1996, Science.

[35]  Francesco Berrilli,et al.  Tor vergata Synoptic Solar Telescope: preliminary optical design and spectral characterization , 2020, Journal of Physics: Conference Series.

[36]  E. Landi Degl'Innocenti,et al.  Simulation of Magneto-Optical Filter Transmission Profiles , 2007 .

[37]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[38]  Carolus J. Schrijver,et al.  A Characteristic Magnetic Field Pattern Associated with All Major Solar Flares and Its Use in Flare Forecasting , 2007 .

[39]  Owen Giersch GONG Inter-site Hα Flare Comparison , 2013 .

[40]  Alessandro Cacciani,et al.  MEASURING DOPPLER AND MAGNETIC FIELDS SIMULTANEOUSLY , 1997 .

[41]  Frank Hill,et al.  Workshop Report: A New Synoptic Solar Observing Network , 2013 .

[42]  M. Temmer,et al.  An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory , 2018, Solar Physics.

[43]  Robert D. Bentley,et al.  Automation of the Filament Tracking in the Framework of the HELIO Project , 2013 .

[44]  F. Berrilli,et al.  The MOTH II Doppler-Magnetographs and Data Calibration Pipeline , 2017, Proceedings of the International Astronomical Union.

[45]  Francesco Berrilli,et al.  Current state and perspectives of Space Weather science in Italy , 2020 .

[46]  Ermanno Pietropaolo,et al.  Forecasting the 2018 February 12th CME propagation with the P-DBM model: a fast warning procedure , 2019 .

[47]  F. Berrilli,et al.  The Complex Nature of Magnetic Element Transport in the Quiet Sun: The Lévy-walk Character , 2019, The Astrophysical Journal.

[48]  T. Pock,et al.  Real-time Flare Detection in Ground-Based Hα Imaging at Kanzelhöhe Observatory , 2014, 1411.3896.

[49]  Ermanno Pietropaolo,et al.  A probabilistic approach to the drag-based model , 2018 .

[50]  S. Jefferies,et al.  Seismology of the solar atmosphere , 2004 .

[51]  S. Jefferies,et al.  The Importance of Long-Term Synoptic Observations and Data Sets for Solar Physics and Helioseismology , 2015 .

[52]  Frank Hill,et al.  Design of a next generation synoptic solar observing network: solar physics research integrated network group (SPRING) , 2018, Astronomical Telescopes + Instrumentation.

[53]  S. Jefferies,et al.  On the observation of traveling acoustic waves in the solar atmosphere using a magneto-optical filter , 2007 .

[54]  Steven Tomczyk,et al.  An instrument to observe low-degree solar oscillations , 1995 .

[55]  F. Berrilli,et al.  Algorithm for real time flare detection . , 2012 .