COMPUTATIONAL HOMOGENIZATION METHOD AND REDUCED DATABASE MODEL FOR HYPERELASTIC HETEROGENEOUS STRUCTURES

[1]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[2]  Julien Yvonnet,et al.  Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction , 2008 .

[3]  W. Brekelmans,et al.  Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .

[4]  Atef F. Saleeb,et al.  Nonlinear material parameter estimation for characterizing hyper elastic large strain models , 2000 .

[5]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[6]  P. P. Castañeda,et al.  A second-order homogenization method in finite elasticity and applications to black-filled elastomers , 2000 .

[7]  Ivonne Sgura,et al.  Fitting hyperelastic models to experimental data , 2004 .

[8]  N. Triantafyllidis,et al.  Comparison of microscopic and macroscopic instabilities in a class of two-dimensional periodic composites , 1993 .

[9]  D. Kondo,et al.  Implementation and numerical verification of a non-linear homogenization method applied to hyperelastic composites , 2008 .

[10]  Finite Strain Micromechanical Modeling of Multiphase Composites , 2008 .

[11]  Gal deBotton,et al.  Neo-Hookean fiber-reinforced composites in finite elasticity , 2006 .

[12]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[13]  Naoki Takano,et al.  Macro-micro uncoupled homogenization procedure for microscopic nonlinear behavior analysis of composites , 1996 .

[14]  Frédéric Feyel,et al.  Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .

[15]  Oscar Lopez-Pamies,et al.  Second-Order Estimates for the Macroscopic Response and Loss of Ellipticity in Porous Rubbers at Large Deformations , 2004 .

[16]  Christian Soize,et al.  Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis , 2012, International Journal for Numerical Methods in Engineering.

[17]  Julien Yvonnet,et al.  A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials , 2011 .

[18]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[19]  L. Chevalier,et al.  Tools for multiaxial validation of behavior laws chosen for modeling hyper-elasticity of rubber-like materials , 2002, 1011.5031.

[20]  Peter Wriggers,et al.  An adaptive method for homogenization in orthotropic nonlinear elasticity , 2007 .

[21]  Nicolas Triantafyllidis,et al.  An Investigation of Localization in a Porous Elastic Material Using Homogenization Theory , 1984 .

[22]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[23]  Somnath Ghosh,et al.  A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .

[24]  Tarek I. Zohdi,et al.  A numerical method for homogenization in non-linear elasticity , 2007 .

[25]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[26]  Nicolas Triantafyllidis,et al.  Failure Surfaces for Finitely Strained Two-Phase Periodic Solids Under General In-Plane Loading , 2006 .

[27]  J. Michel,et al.  Microscopic and macroscopic instabilities in finitely strained porous elastomers , 2007 .

[28]  Ray W. Ogden,et al.  Extremum principles in non-linear elasticity and their application to composites—I: Theory , 1978 .

[29]  Julien Yvonnet,et al.  Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials , 2009 .

[30]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[31]  Shaofan Li,et al.  Introduction To Micromechanics And Nanomechanics , 2008 .

[32]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[33]  Q. He,et al.  Exact Results for the Homogenization of Elastic Fiber-Reinforced Solids at Finite Strain , 2006 .

[34]  Francisco Chinesta,et al.  Routes for Efficient Computational Homogenization of Nonlinear Materials Using the Proper Generalized Decompositions , 2010 .