Magnetic anisotropy of Y-type ferrites: Role of the local lattice structure

We study magnetic anisotropy (MA) of the Y-type ferrites using an electron theory at 0 K that was previously applied to M-type and spinel ferrites. In our calculation, we consider the local lattice structure around M2 + ions in the ferrites (M2Y ferrites), where M represents Fe, Co, Ni and Cu. The calculated MA energy, difference between magnetic energies of states with magnetisation Ms parallel and perpendicular to c-axis of the hexagonal lattice, is compared with the experimental values by identifying possible occupation sites of M2 +. The calculated MA energies of Co2Y and Ni2Y are − 0.33 and − 0.39 MJ m−3, respectively. The negative sign indicates that Ms is within the c-plane of the lattice. We have analyzed in detail how the local lattice structure around M2 + affects the MA of the M2Y ferrites. The c-plane MA constant K3 of Co2Y is also calculated and compared with the experimental value. In addition, the MAs of Mg2Y and Zn2Y are examined. The findings of this study may contribute to design Y-type ferrites which are applicable to hyper-frequency regime.

[1]  Piotr Kulik,et al.  Broadband free space impedance in Co2Z hexaferrites by substitution of high valency heavy transition metal ions for miniaturized RF devices , 2020, 2001.01827.

[2]  J. Inoue,et al.  Magnetic anisotropy and orbital angular momentum in the orbital ferrimagnet CoMnO3 , 2019 .

[3]  J. Inoue,et al.  Large negative uniaxial magnetic anisotropy in highly distorted Co-ferrite thin films , 2019, Applied Physics Letters.

[4]  H. Onoda,et al.  Control of Magnetic Anisotropy by Lattice Distortion in Cobalt Ferrite Thin Film , 2018, IEEE Transactions on Magnetics.

[5]  Yoshinori Kobayashi,et al.  中性子回折,広域X線吸収微細構造およびX 線磁気円二色性によるCa-La-Co系M型フェライトの陽イオン分布解析 , 2016 .

[6]  H. Štěpánková,et al.  Charge localization and magnetocrystalline anisotropy in La, Pr, and Nd substituted Sr hexaferrites , 2015 .

[7]  J. Inoue,et al.  Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films , 2014 .

[8]  J. Inoue,et al.  Extraordinarily large perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite CoxFe3−xO4(001) (x = 0.75, 1.0) thin films , 2013 .

[9]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[10]  J. Takada,et al.  Synthesis of single-phase Sr3Co2Fe24O41 Z-type ferrite by polymerizable complex method , 2011 .

[11]  T. Nakagawa,et al.  Cation distribution analysis of Sr-La-Co M-type ferrites by neutron diffraction, extended X-ray absorption fine structure and X-ray magnetic circular dichroism , 2011 .

[12]  義徳 小林,et al.  Ca-La-Co系M型フェライトの組成と磁気特性 , 2008 .

[13]  C. Ong,et al.  Co2+Ti4+ substituted Z-type barium ferrite with enhanced imaginary permeability and resonance frequency , 2006 .

[14]  Y. Ogata,et al.  Development of La-Co Substituted Ferrite Magnets , 2003 .

[15]  Ji Zhou,et al.  Complex Y-type hexagonal ferrites: an ideal material for high-frequency chip magnetic components , 2003 .

[16]  F. Kools,et al.  NMR characterization of Co sites in La+Co-doped Sr hexaferrites with enhanced magnetic anisotropy , 2002 .

[17]  J. Kreisel,et al.  Sublattice occupation in Sr1−xLaxFe12−xCoxO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy , 2002 .

[18]  Masashi Kawasaki,et al.  Pulsed Laser Epitaxy and Magnetic Properties of Single Phase Y-Type Magnetoplumbite Thin Films , 2001 .

[19]  K. Iida,et al.  Magnetocrystalline Anisotropy of M-Type Sr-Ferrite Containing Lanthanum and Cobalt. , 1999 .

[20]  J. Burdett,et al.  Electronic structure and properties of solids , 1996 .

[21]  T. Fournier,et al.  Magnesium location in the barium-magnesium-iron Y-type hexagonal ferrite , 1993 .

[22]  H. Shin,et al.  X-ray powder diffraction patterns of two Y-type hexagonal ferrites , 1993, Powder Diffraction.

[23]  I. Onyszkiewicz,et al.  A study on magnetocrystalline anisotropy in tetragonal copper ferrite , 1990 .

[24]  J. Joubert,et al.  Cobalt location in the Y-type hexagonal ferrite: BaCoFe6O11 , 1989 .

[25]  J. Desvignes,et al.  Crystal structure and zinc location in the BaZnFe6O11 Y-type hexagonal ferrite , 1989 .

[26]  P. Novák,et al.  Chapter 4 Oxide spinels , 1982 .

[27]  M. Sugimoto Chapter 6 Properties of ferroxplana-type hexagonal ferrites , 1982 .

[28]  H. Kojima,et al.  Chapter 5 Fundamental properties of hexagonal ferrites with magnetoplumbite structure , 1982 .

[29]  A. Deriu,et al.  Preparation and magnetic characterization of the Ba 2 Zn 2-2x Cu 2x Fe 12 O 22 hexagonal ferrites , 1978 .

[30]  F. Lotgering Magnetic anisotropy and saturation of LaFe12O19 and some related compounds , 1974 .

[31]  W. Buessem,et al.  Temperature Dependence of Ms and K1 of BaFe12O19 and SrFe12O19 Single Crystals , 1969 .

[32]  L. Jahn,et al.  The Coercivity of Hard Ferrite Single Crystals , 1969 .

[33]  M. Asdente,et al.  Tight-Binding Calculation of3dBands of Fe with and without Spin-Orbit Coupling , 1965 .

[34]  J. Slonczewski Origin of Magnetic Anisotropy in Cobalt-Substituted Magnetite , 1958 .

[35]  J. L. Snoek Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s , 1948 .